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Abstract. In magnetic fields stronger than BQ ≡ m2
ec

3/h̄e = 4.4 × 1013 Gauss, an
electron’s Landau excitation energy exceeds its rest energy. I review the physics of
this strange regime and some of its implications for the crusts and magnetospheres of
neutron stars. In particular, I describe how ultra-strong fields

• render the vacuum birefringent and capable of distorting and magnifying
images (“magnetic lensing”);

• change the self-energy of electrons: as B increases they are first slightly
lighter than me, then slightly heavier;

• cause photons to rapidly split and merge with each other;
• distort atoms into long, thin cylinders and molecules into strong, polymer-like

chains;
• enhance the pair density in thermal pair-photon gases;
• strongly suppress photon-electron scattering, and
• drive the vacuum itself unstable, at extremely large B.

In a concluding section, I discuss the spindown of ultra-magnetized neutron stars and
recent soft gamma repeater observations.

ELECTRONS AT B > BQ

The significance of the quantum electrodynamic field strength, BQ, can be un-
derstood via a simple, semi-classical argument. A classical electron gyrating in a
magnetic field satisfies ṗ = ev × B/c, where p = γmev is the momentum. Sub-
stituting ṗ = ωp and v = ωr in this equation and cancelling factors of ω (along
with orbital phase factors), one finds a radius of gyration r = cp/eB, where p
is the transverse momentum (⊥ B). Quantum mechanics implies r · p ∼ h̄ in
the ground state, thus the semi-classical gyration radius is rgyr ∼ λe (B/BQ)−1/2,
where λe ≡ h̄/mec is the electron Compton wavelength. The associated momentum
is p ∼ (h̄/rgyr) ∼ mec (B/BQ)1/2.

This shows that electrons gyrate relativistically in fields B > BQ. One thus
expects excitation energies in excess of mec

2. This is borne out by the solution
to the Dirac equation for an electron in a homogeneous magnetic field. The Dirac
spinors are proportional to Hermite polynomials, and the energy levels or “Landau
levels” are



En = [m2
e + p2

z + m2
e n (2B/BQ)]

1/2
, (1)

in units with h̄ = c = 1 (adopted also in many equations that follow). The first
term in the square brackets is the rest energy. The pz-term gives the energy of
motion parallel to the field, which can take a continuum of values. The discrete
energy levels are given by n = 0, 1, 2 . . . These states are also eigenstates of spin,
with the n = 0 ground state always having s = −1

2
. For pz = 0, the ground

state energy is Eo = me, independent of B. In a semi-classical picture, one could
say that the negative spin-alignment energy in the ground state cancels with the
zero-point gyration energy. Excited Landau levels are two-fold degenerate in s.
The first Landau-level excitation energy is ωB(1) = E1 − Eo ≈ (2B/BQ)1/2 me for
B ≫ BQ. Because this energy is so large, electrons almost always remain in the
ground state for processes thought to occur near the surfaces of ultra-magnetized
neutron stars.

Electron self-interactions resolve the degeneracies of the Landau levels, and shift
the ground state energy. This was first demonstrated by Schwinger, who estimated
the “anomalous” magnetic moment of the electron [1]. The relevant Feynman dia-
gram is shown in Figure 1: a free electron (traveling upward on the page) emits a
virtual photon, interacts with the magnetic field, then reabsorbs the photon. The
electron’s effective spin magnetic moment is enhanced by (1 + α/2π) to first order
in α = e2/h̄c = 1/137, the fine-structure constant. This results in a ground-state
energy shift

Eo = me [ 1 − (α/2π) (B/BQ) ]1/2 . (2)

If extrapolated to B > BQ, this formula would imply that the ground-state en-
ergy of an electron goes to zero at B = (2π/α)BQ ≈ 4 × 1016 Gauss. For stronger
B, the vacuum would become unstable to pair production, with dramatic astro-
physical consequences [2]. But eq. (2) is actually only valid in the sub-BQ regime.
More generally, the electron’s self-energy is determined by the sum of Feynman di-
agrams shown in Figure 2 (ref. [3]). The triple line on the left-hand side represents
the physical electron propagator (i.e., the probability amplitude for an electron to
move from point A to point B). The double lines on the right are bare propagators
for an electron in the presence of a magnetic field, corresponding to basis states

B

FIGURE 1. Anomalous magnetic moment diagram.



with energies given by eq. (1).1

When the calculation is done, it is found that the electron ground-state energy di-
minishes according to eq. (2) as B increases within the Schwinger domain B ≪ BQ,
but it reaches a minimum value of (1 − 4.6 × 10−5)me at B = 0.25 BQ and then
rises [4,5]. At B > 0.65 BQ the electron grows heavier than me, but only slowly.
The asymptotic fractional enhancement, valid at very large B, is [6]

(Eo − me)/me = (α/4π)
(

[

ln(2B/BQ) − ξ − 3
2

]2
+ β

)

B ≫ BQ (3)

to first order in α, where ξ = 0.577 is Euler’s constant, and β ≈ 3.9 is a numerical
constant (estimated here from the numerical integrations of ref. [4]).

Thus, an electron’s ground-state energy is doubled, Eo ∼ 2me, only at B ∼ 1032

Gauss. (Higher-order corrections might change this result somewhat.) Of course,
the maximum fields attained in neutron stars fall far short of this. The dynamical
saturation field for convective motions in nascent neutron stars is ∼ 1016 G; and
B ∼ 3 × 1017 G is possible if the free energy of differential rotation in a rapidly-
rotating, newborn neutron star is efficiently converted by a post-collapse dynamo
[7,8]. But if B > (8πPYe)

1/2 ∼ 1017 G, where P is the pressure and Ye the electron
fraction in the liquid interior of a neutron star, then buoyancy overcomes stable
stratification and an inhomogeneous field is dynamically lost [9,8].

For B ∼ 1017 G, eq. (3) implies Eo − me ≈ 0.03 me. Thus, magnetic self-energy
corrections for electrons and positrons are probably not important over the range
of magnetic fields and at the level of accuracy typically attained in neutron star
astrophysics.

1) Self-interactions also occur when B = 0. The double-line propagators of Fig. 2 are then
replaced with single-line, free-electron propagators (plane-wave states), and the resultant energy
shifts—formally divergent—are absorbed into the electron’s known rest mass by the renormaliza-
tion of quantum electrodynamics. A strong magnetic field changes the self-energy when the same
renormalization prescriptions are used. Note that the Schwinger diagram of Fig. 1 is included in
the second diagram on the right of Fig. 2: when B < BQ, the double-line propagators can be ap-
proximated as single-line, free electron propagators undergoing discrete, perturbative interactions
with the magnetic field. Positron intermediate states are included; they correspond to a subset
of the vertex time-orderings which are summed over. The lowest-order tadpole diagram gives no
contribution in a homogeneous magnetic field.

FIGURE 2. Electron self-energy in a magnetic field: lowest-order diagrams.



ATOMS AND MOLECULES AT B > BQ

At sufficiently low temperatures, a magnetar’s surface will be covered with atoms
and molecules. This surface structure can have consequences for the star’s quiescent
X-ray emissions, because it determines the work function for removing charged par-
ticles from the surface, as necessary for maintaining currents in the magnetosphere
[10]. Such currents may result from magnetically-driven crustal deformations such
as twists of circular patches of the crust.2 If a bundle of field lines, describing an
arch in the magnetosphere, has one footpoint twisted (with the motion driven from
below by the evolving field), then a current must flow along the arch to maintain
the twisted exterior field, since

∮

B · dℓ = 4πI/c. Surface impacts of the flowing
charges create hot spots at the arch’s footpoints and ultimately dissipate the exte-
rior magnetic energy of the twist, with implications for SGR and AXP X-ray light
curves and their time-variations [10]. Here we focus on the atomic and molecular
physics that comes into play, following a paper by Ruderman [11] and extending
the arguments to B > BQ.

The Bohr radius of a hydrogen atom is ro = λe/α. The quantum gyration
radius, rgyr = λe (B/BQ)−1/2, is smaller than ro for B > α2 BQ = 2.4 × 109 G.
This is the characteristic field strength at which magnetism radically alters the
atomic structure of matter.3 At B > α2BQ, an atomic electron is constrained
to gyrate along a cylinder which lies entirely within the spherical volume that
the unmagnetized atom would occupy. Electrostatic attraction binds the electron
strongly to the central nucleus. At B ≫ α2 BQ the cylinder becomes very long
and narrow, and atomic binding energies are adequately given by eigenvalues of
the one-dimensional Schrödinger equation. A simple, intuitive estimate—which
gives a good estimate of the ground state energy despite its lack of rigor—involves
idealizing the atom as a line-charge of length 2ℓ. For linear charge density e/2ℓ,
the electrostatic energy is ε = −(e2/ℓ) ln[ℓ/ rgyr]. A lower cutoff rgyr is necessary
because the charge distribution does not resemble a line when you get within ∼
rgyr of the nucleus. It is more like a sphere, contributing an energy ∼ −qe/rgyr

where q = ergyr/ℓ; but this contribution can be neglected in the limit ℓ ≫ rgyr or
B ≫ α2BQ. Thus, the ground state energy, including the energy of non-relativistic
motion parallel to B, is Eo(ℓ) = (h̄2/2meℓ

2) − (e2/ℓ) ln[ℓ/ rgyr]. Minimizing this
according to dEo/dℓ = 0, we find ℓ ≃ ro [ ln(ro/rgyr) ]−1. This shows that the length

of the thin cylindrical atom is less than the Bohr diameter, but only by a modest,
logarithmic factor. The ground state hydrogen binding energy is then

2) Crustal twists, with spiral patterns of shear strain, may be a common type of magnetically-
driven deformation. The pressure in the crust is due mostly to degenerate particles (relativistic
electrons, and free neutrons at densities above neutron drip), but the shear modulus is due only
to relatively weak Coulomb forces of the lattice. Hence the crust is relatively incompressible,
and pure shear deformations allow the largest range of motion, with the greatest energy transfer
between the crust and the magnetic field.
3) The largest field you are ever likely to encounter personally is ∼ 104 G if you have an medical
MRI scan. Fields >

∼ 109 G would be instantly lethal.



Eo ≃ −(ǫo/4) [ ln(B/α2 BQ) ]2 for B ≫ α2BQ, (4)

where ǫo = α2me/2 = 13.6 eV is one Rydberg. Note that E ∝ [ln B]2 energy
scalings are ubiquitous in ultra-magnetized systems (cf. eqs. 3,4,5).

As B increases beyond B ∼ BQ, the radius of the atomic cylinder shrinks to less
than the Compton wavelength but eq. (4) remains a reasonably good approxima-
tion. This is because the electron’s inertia for longitudinal motion (‖ B) stays close
to me in the ground-state Landau level even at B > BQ. Equation (4) would be-
come invalid if the longitudinal motion became relativistic. But this would require
ℓ < λe, which occurs only at B > α2 exp(2/α) BQ ≈ 10115 G. Magnetic fields can
never get this strong. We will show that the vacuum breaks down at smaller B.

Equation (4) implies that the binding energy of hydrogen near the surface of
a magnetar with B ≃ 10 BQ, is Eo ≃ 0.5 keV. This is comparable to the surface
temperatures of some young magnetar candidates [12,13].

There are two classes of hydrogenic excitations. Longitudinal excited states are
well-approximated as multi-nodal eigenfunctions of the 1-D Schrödinger equation;
e.g., the first excited state has a node at the position of the nucleus. Transverse
excited states involve transverse displacements of the center of electron gyration
away from the nucleus. Semi-classically, the electron then experiences E ×B drift,
and its center of gyration moves in a circular orbit around the nucleus. (See ref. [11]
for details.) Of course, Landau-level excitations are also possible, but the excitation
energy is enormous for B > BQ. Atoms generally become unbound when such free
energies are present.

Longitudinal excitations tend to require more energy than transverse, so in ultra-
magnetized multi-electron atoms, orbitals corresponding to transverse hydrogenic
states fill up before longitudinal. In fact, for B > Z3α2BQ ≈ (Z/26)3 BQ, where Z
is the electron number, no orbitals with longitudinal nodes are occupied, and the
atomic structure is very simple [11,14]. Note that Fe56, which is likely to be the
dominant nuclear species on a clean neutron star surface, has Z = 26. Thus, this
condition is satisfied on magnetars, but not on radio pulsars with fields ∼ 1012 G.
The atomic binding energy is then

Eo(Z) ≃ −(7/24) Z3 ǫo [ ln(B/Z3 α2 BQ) ]2. (5)

When B ≫ Z3α2BQ ≈ (Z/26)3 BQ, atoms on a neutron star’s surface form long
polymer-like molecular chains parallel to B, bound by the electrostatic attraction
of shared electrons. The molecular binding energy per nucleus is [11,15,16]

∆E ≃ −(3/2) Z3 ǫo (B/Z3 α2 BQ)0.37. (6)

Together, these results determine the approximate work function for ionic emission
from a magnetar’s surface [10].



VACUUM POLARIZATION AND RADIATIVE

PROCESSES

Photon modes in the magnetized vacuum include the extraordinary mode or
E-mode, with oscillating electric vector EE ⊥ B, and the ordinary mode or O-mode,
with EO ⊥ EE. Both electric vectors are also orthogonal to k, the direction of
propagation.4 Due to the process shown in Fig. 3, where the double-lines are
propagators for a magnetized, virtual e+ e− pair, the indices of refraction of the
two modes are very different at B > BQ: 5

nO = 1 + (α/6π) sin2 θkB (B/BQ)
nE = 1 + (α/6π) sin2 θkB.

If nO − nE
>
∼ (kℓB)−1, where k is the wavenumber and ℓB is the scale-length

of variation of the magnetic field, then the modes adiabatically track: E stays E
and O stays O as photons move through the changing field geometry. This con-
dition is generally satisfied for X-rays in the magnetospheres of magnetars. Sha-
viv, Heyl & Lithwick [19] used geometrical optics to model magnetic lensing in
the vicinity of a magnetar with a pure dipole field and a uniformly bright sur-
face. They found O-mode image distortion and amplification, varying with viewing
angle. This remarkable effect may be hard to observe in practice because fields
B >

∼ (6π/α)BQ ∼ 1017 G are required to produce strong lensing effects. Obser-
vations may also be complicated by non-uniform surface brightness, gravitational
lensing [20], higher-order magnetic multipoles, photon splitting (see below) and
X-ray emission from a magnetar’s diffuse, Alfvén-heated halo.

When the excitation energy of the first Landau-level is much greater than the
photon energy, ωB(1) ≡ me[(1 + 2B/BQ)1/2 − 1] ≫ ω, then photon scattering

off electrons is strongly suppressed in the E-mode. Semi-classically, this is easy
to understand: the radiation electric field (EE ⊥ B) is unable to significantly
drive electron recoil. Paczyński first noted [21] that this greatly accelerates X-

4) Photon eigenmodes are linearly polarized, as described here, except in narrow zones of k-
space where the angle between k and ±B satisfies θkB

<
∼ (ω/me)

1/2 (B/BQ)−1/2 and h̄ω is the
photon energy. For propagation along ±B within these zones, the E and O modes are elliptically
polarized; and circularly polarized for k ‖ ±B.
5) The affect of a magnetized plasma on the eigenmodes and indices of refraction is small in
comparison to the magnetic vacuum polarization so long as ω ≫ ωc2 ≡ (3π/α)1/2 (B/BQ)−1/2 ωp

for B ≫ BQ, where ωp = (4πNee
2/me)

1/2 is the plasma frequency and Ne is the electron density
(see [18] and references cited therein). This is satisfied in many or most applications to observable
phenomena in magnetar magnetospheres since ωc2 = 0.13 (Ne/1023 cm−3)1/2 (B/10 BQ)−1/2 keV.

FIGURE 3. Vacuum polarization diagram.



ray diffusion in the vicinity of magnetars, facilitating hyper-Eddington burst and
flare emissions. The E-mode scattering cross section, relative to Thomson, is
σ(E)/σT ∼ (ω/me)

2 (B/BQ)−2 in the regime of possible relevance for soft gamma
repeater (SGR) bursts; see §3.1 of ref. [17] for more details.

Photon splitting and merging , another important radiative effect, is depicted in
Figure 4, with time advancing from left to right for splitting, and right to left for
merging. These processes are kinematically forbidden in free space, but they oper-
ate at B > BQ because the field acts as an efficient sink of momentum. (Note the
double-line, magnetized e− and e+ propagators in Fig. 4.) The dominant splitting
channel is E → O O. The rate for B > BQ and ω < me is [22,23]

Γsp = (α3/2160π2) sin6 θkB (ω/me)
5 me. (7)

(Splitting E → O E also occurs, but at a lower rate.) Note that Γsp increases
steeply with increasing photon energy; but it is independent of B for B > BQ. At
B < BQ the process shuts down abruptly: Γsp ∝ (B/BQ)6.

How does this process affect SGR burst spectra? Simple splitting cascade mod-
els [24] are illustrative but not realistic since O-mode photons do not split. Re-
alistically, one must consider the subtle interplay of splitting/merging and Comp-
ton scattering [17]. In particular, E-mode splitting outside the E-mode scattering
photosphere produces O-mode photons which are isotropized by rapid Compton
scattering. Subsequent mergers O O → E yield a quasi-isotropic E-mode source
function. Only at B < BQ and outside the O-mode photosphere do the modes
truly decouple and all photons stream outward; see §6 of ref. [17] for many more
details.

THE ULTRA-MAGNETIZED PAIR GAS

Ultra-strong magnetic fields also have profound thermodynamic effects. The
magnetized photon-pair gas gives an example. Such a gas may be created during
an SGR burst or flare, when a crust fracture or other magnetically-driven instability
suddenly injects a large quantity of energy into the magnetosphere [17]. The result
is an optically-thick trapped fireball , confined by closed field lines, anchored to the
star’s surface. The gas inside this fireball has remarkable properties, as illustrated
in Fig. 5. (This figure is included here courtesy of A. Kudari [25].) The figure
shows the ratio of pair energy density to the photon energy density, Λ ≡ Ue+e−/Uγ,

FIGURE 4. Photon splitting and merging in a strong magnetic field.



as a function of T and B. For T ≫ me and T ≫ ωB(1), the magnetic field has
little effect on the ultra-relativistic pairs: Ue+e− = 2 · (7/8)aT 4, so Λ = (7/4). This
should hold true across the whole right-hand side of Fig. 5, but only 1000 Landau
levels were used in making this graph, so the ratio falls artificially below (7/4) at
high T and low B.

The striking peak in Fig. 5 is real, however. It occurs for pairs with non-
relativistic longitudinal motion, T ≪ me, and B > BQ. In this regime, only
the first Landau level is occupied: T ≪ ωB(1). The peak occurs because elec-
trons and positrons are strongly localized in directions transverse to the field:
rgyr = λe (B/BQ)−1/2. This allows more of them to be packed into a given volume
of ultra-magnetized gas. Formulae for thermodynamic parameters of a pair-photon
gas in various limits are given in ref. [25] and in §3.3 of ref. [17].

Note that the trapped fireball of a common SGR burst, with energy ∆E ∼ 1041

ergs confined within a volume of order (∆R)3 ∼ (10 km)3 at B ∼ 10 BQ has a
temperature T ∼ 160 keV [17,25]. This puts it right on the peak in Fig. 5 !

FIGURE 5. The ratio of pair energy density to photon energy density in a pair-photon gas, as

a function of temperature and magnetic field strength.



MAGNETIC VACUUM BREAKDOWN

We argued above that a uniformly magnetized vacuum is stable against spon-
taneous electron-positron pair production. Nevertheless, at sufficiently high B
the vacuum must break down. Magnetic monopoles with mass mη and magnetic
charge η are spontaneously created when the energy they acquire in falling across a
monopole Compton wavelength, ε ∼ ηB · (h̄/mηc), exceeds their rest energy mηc

2.
Dirac showed that a monopole charge is an integral multiple of η = (h̄c/2e) from
the condition that an electron wavefunction must be single-valued in the field of a
monopole [26]. Thus, magnetic fields can never get stronger than

Bmax ∼ α (mη/me)
2 BQ . (8)

A firm upper bound is Bmax ≃ 1055 G for Planck-mass monopoles, mη = 1019 GeV.
GUT theories predict mη = 1016 GeV or Bmax ≃ 1049 G. Superstring/M-theory
predicts intermediate values: mη = α−1/2

s = 1017–1018 GeV, where αs is the string
tension, thus

Bmax ≃ 1051 − 1053 G. (9)

New work shows that the energy scale for quantum gravity could be as low as
Mo ∼ 1 TeV if there exist “large” extra dimensions to space [27]. The extra dimen-
sions are wrapped in closed geometries (e.g., circles) of size L ∼ 1(Mo/1 TeV)−2

millimeter for two extra dimensions, or L ∼ ℓp(Mo/Mp)
−(n+2)/n ℓp for n extra di-

mensions; where Mp the Planck mass and ℓp is the Planck length. This would imply
a small limiting field strength: Bmax ≃ 1023 (mη/1 TeV)2 G. However, there is no
experimental evidence for large extra dimensions at the present time. The most
plausible upper limit is given by eq. (9).

Thus, a vast range of tremendous field strengths are possible in Nature. We
don’t yet know any objects that generate such fields, but some possibilities have
been suggested. For example, superconducting cosmic strings—if they exist—could
generate fields >

∼ 1030 G in their vicinities [28]. Perhaps future astrophysicists will
regard neutron star magnetic fields as mild !

MAGNETAR SPINDOWN

In this final section, I consider a topic of great current interest, namely recent
observations of soft gamma repeater spindown histories [29–34], and their inter-
pretation in the context of the magnetar model. At present, the most promising
scenario involves episodic, wind-aided spindown (§4 in ref. [10]). This is based upon
several background developments. In 1995 Thompson and I proposed that frequent,
small-scale fractures in the crust of a young magnetar produce quasi-steady seismic
and magnetic vibrations, energizing the magnetosphere and driving a diffuse, rela-
tivistic outflow of particles and Alfvén waves (§7.1.2 in ref. [17]). A year later we
made a first estimate of this outflow’s power [12]. Thompson & Blaes subsequently
noted that a magnetar’s rate of spindown is greatly accelerated by such a wind



(§VII B in ref. [35]). All of this work pre-dated the discovery of X-ray pulsations
from SGRs [29].

How strong is the wind? The wind luminosity, LW scales roughly with the mag-
netic energy density in the deep crust,6 ∝ B2

crust [12]. But if Bcrust > (4πµ)1/2 ∼
6 × 1015 G, where µ is the shear modulus in the deep crust, then evolving mag-
netic stresses overwhelm lattice stresses and the crust deforms plastically instead
of fracturing, choking off the Alfvén-powered wind. This suggests an upper limit
LW

<
∼ 5 × 1036 erg s−1 for a ∼ 104-year-old magnetar [12]. In 1996, we proposed

that a wind operating near this upper limit could account for radio synchrotron
nebula that seemed to surround SGR 1806−20 [36]. However, we now know that
the SGR is not coincident with this nebula [37]. There is no direct observational
evidence for a quasi-steady wind from any SGR. Magnetar winds must be mild
enough to produce no detected radio emission, with LW probably much less than
the theoretical upper limit of ref. [12], because this limiting value assumed optimal
conditions, including the dubious application of a formula at the edge of the regime
where it breaks down (i.e., Bcrust ∼ Bµ). It is likely that LW is comparable to the
steady X-ray luminosity emitted by the hot stellar surface and Alfvén-energized
halo: LW ∼ 1035–1036 erg s−1.

Rothschild, Marsden and Lingenfelter have plotted two graphs, included in this
volume, which nicely elucidate constraints on SGR spindown for constant LW and
Bdipole, based upon formulae derived independently in refs. [38,10].7 These plots
show that wind luminosities LW

<
∼ 1036 erg s−1 imply Bdipole

>
∼ 1014 G in order

to match the observed values of P and Ṗ ; but the implied stellar ages are then
moderately shorter than the estimated ages of the putative associated supernova
remnants (SNRs). Of course, the SNR associations or ages may be unreliable,
since the SGRs lie far from the SNR centers, and the ages are only rough order-
of-magnitude estimates. However, we favor a different interpretation: the wind is
probably episodic, so the effective spindown age of the star is less than the SNR
age. In particular, we proposed (in §4.1–4.2 of ref. [10]) that strong winds and rapid
spindown prevail only during limited episodes of a young magnetar’s life, when it is
magnetically active and observable as an SGR. This fits in nicely with observations
of anomalous X-ray pulsars (AXPs). These objects have spindown ages P/2Ṗ that
are comparable or longer than the ages of their associated SNRs [39,40], suggestive
of young magnetars observed during their non-windy, inactive episodes. A fully
consistent scenario is possible [10].

Note, incidentally, that Bdipole
<
∼ BQ is possible in a magnetar if the lowest-order

magnetic moment decays quickly, e.g., via the Flowers-Ruderman instability [41]
(see §14.2 and 15.2 in ref. [8]; §7.1.2 in ref. [17]). This is because a magnetar
is a magnetically-powered neutron star: its emissions depend upon the total free

6) Most of the free energy in magnetars is stored in the internal magnetic field, probably in
toroidal and high-multipole components, so Bcrust is usually much greater than Bdipole.
7) These references correct an inaccuracy in the original wind-aided spindown rate given by
ref. [35].



energy and configuration of its magnetic field, not simply upon its exterior dipole

moment. The light curve of the 1998 August 27 giant flare gives evidence for strong
higher-order multipole moments in SGR 1900+14 [42]. SGR bursts give evidence
for magnetically-powered activity (e.g., refs. [17,42–44]).

Marsden et al. [33] also suggested that the spindown rate of SGR1900+14 was
enhanced by a factor ∼ 2 during the summer of 1998. In the context of the
magnetar model, this could mean that LW increased by a factor ∼ 4. Possible
evidence for this comes from Ṗ measurements during RXTE runs immediately
preceding and following the interval in question [31]; but it should be noted that
RXTE was observing the SGR at those times as a “target of opportunity” because
the star was emitting hundreds of bursts [31,34]. Transient accelerated spindown
during episodes of vigorous bursting can occur in the magnetar model, because the
relativistic outflow may be enhanced. But only a handful of bursts were detected
by BATSE during mid-summer of 1998 [34], and the RXTE/ASCA determination
of Ṗ between 1998 Aug. 28 and Sept. 17 was 6.2×10−11 s/s [34] (a number that was
rounded up to 1. × 10−10 in ref. [32]). Furthermore, spindown rates measured over
short time intervals, such as during single RXTE runs, can be affected by other
transient or periodic effects (e.g., free precession: see §4.3 in ref. [10]; also ref. [45]).

Although an increase in Ṗ by ∼ 2 during the summer of 1998 cannot be ruled
out, we suspect that the average spindown rate was similar to that which prevailed
at other times during the past few years, and the observed shift in the spindown
history was due to an abrupt spindown glitch during the extraordinary giant flare
of 1998 August 27th. Such a glitch could be caused by the unpinning of crustal
superfluid vortices in a magnetar with a crust that has been deformed by evolving
magnetic stresses [10].

In conclusion, we have come a long way from the days of ref. [7] when simple
magnetic dipole radiation seemed to be an adequate idealization for SGR spindown!
More observations are needed to determine whether glitches really occur in SGRs
and AXPs [12,46,10] and what sign they may have; whether these stars exhibit free
precession (which could give us the first direct measure of a magnetar’s internal

field [45,10]); and to further test and constrain models of these fascinating stars.
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