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Abstract

Using a series transformation, Stirling-De Moivre asymptotic series ap-
proximation to the Gamma function is converted into a new one with better
convergence properties. The new formula is compared with those of Stir-
ling, Laplace and Ramanujan for real arguments greater than 0.5 and turns
out to be, for equal number of ’correction’ terms, numerically superior to
all of them. As a side benefit, a closed-form approximation has turned up
during the analysis which is about as good as 3rd order Stirling’s (maxi-
mum relative error smaller than 1e-10 for real arguments greater or equal
to 10). Note: this article is an extended version of an older one [7] to which
it adds the estimate of the remainder.

1 Introduction

1.1 The main result

In this paper, as we claimed in the abstract, we present a new asymptotic expansion for the
gamma function for real arguments greater or equal than one. We give an explicit formula
for the coefficients in the series and estimate the error. After the proof, we compared
our new formula with some classical results. The numerical comparison shows that for
equal number of ’correction’ terms the new formula is the most accurate and it is highly
recommended for computing the Gamma function for large real arguments.

Theorem 1. Let x ≥ 1, then for every n ≥ 1, the following expression holds:

Γ (x) =

(
x

e

(
n−1∑
k=0

Gk
x2k

+Rn (x)

))x√
2π
x
, (1.1)

where Rn (x) = O
(

1
x2n

)
and the Gk coefficients are given by

Gk =
∑

m1,m2,...,mk≥0
2m1+4m2+...+2kmk=2k

k∏
r=1

1
mr!

(
B2r

2r (2r − 1)

)mr

, G0 = 1, (1.2)

where Br denotes the rth Bernoulli number [4]. Moreover, if x ≥ n+ 1, then

|Rn (x)| ≤

(
(n+ 1) e+

8e1/5

n (2n− 1) (2π)2n

)(n
x

)2n
. (1.3)
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2 The proof of the theorem

2.1 Explicit formula for the coefficients

The proof of our theorem is based on the following well-known and more precise version
of the Stirling-De Moivre series [3].

Theorem 2. Let x ≥ 1, then for every n ≥ 1, the following expression holds:

log Γ (x) =
(
x− 1

2

)
log x− x+

1
2

log (2π) +
n−1∑
k=1

B2k

2k (2k − 1)x2k−1
+ Sn (x) , (2.1)

where the Sn (x) remainder satisfies

|Sn (x) | ≤ |B2n|
2n (2n− 1)x2n−1

, (2.2)

where Bk denotes the kth Bernoulli number.

Proof. A simple algebraic manipulation of the above expansion gives

1
x

log
(

Γ (x) ex

xx−1/2
√

2π

)
=

n−1∑
k=1

B2k

2k (2k − 1)x2k
+
Sn (x)
x

. (2.3)

Taking the exponential of both sides gives(
Γ (x) ex

xx−1/2
√

2π

)1/x

= exp

(
n−1∑
k=1

B2k

2k (2k − 1)x2k

)
· exp

(
Sn (x)
x

)
. (2.4)

By the Maclaurin series of the exponential function we obtain

exp

(
n−1∑
k=1

B2k

2k (2k − 1)x2k

)
· exp

(
Sn (x)
x

)
(2.5)

= exp
(
Sn (x)
x

)
·
n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k

)
(2.6)

= exp
(
Sn (x)
x

)
·
n−1∏
k=1

∑
l≥0

1
l!

(
B2k

2k (2k − 1)x2k

)l
. (2.7)

Applying the Cauchy product and collecting the coefficients of x−2k we obtain

exp
(
Sn (x)
x

)
·
n−1∏
k=1

∑
l≥0

1
l!

(
B2k

2k (2k − 1)x2k

)l
=

n−1∑
k=0

Gk
x2k

+Rn (x) , (2.8)

where the Gk coefficients are given by

Gk =
∑

m1,m2,...,mk≥0
2m1+4m2+...+2kmk=2k

k∏
r=1

1
mr!

(
B2r

2r (2r − 1)

)mr

, G0 = 1, (2.9)

and Rn (x) = O
(

1
x2n

)
. This completes the proof of the first part of the theorem.

2



2.2 The estimate of the remainder

We will estimate uniformly by x and n the value of the remainder Rn (x) by the method
of Karatsuba [1].

Proof. In the first part of the proof we saw that

exp
(
Sn (x)
x

)
·
n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k

)
=

n−1∑
k=0

Gk
x2k

+Rn (x) . (2.10)

First let
n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k

)
=
∑
j≥0

Kj

xj
, (2.11)

thus K2j = Gj if 0 ≤ j ≤ n − 1 and K2j+1 = 0 if j ≥ 0. Let us verify the order of the

factor exp
(
Sn(x)
x

)
. Assume that x ≥ n+ 1, then∣∣∣∣Sn (x)
x

∣∣∣∣ ≤ |B2n|
2n (2n− 1)x2n

≤ 4
n (2n− 1)x2n

( n
2π

)2n
<

1
9

(2.12)

by the well known inequality

|B2n| ≤ 8
( n

2π

)2n
. (2.13)

On the other hand we have

exp
(
Sn (x)
x

)
=
∑
k≥0

1
k!

(
Sn (x)
x

)k
= 1 + 2δn

Sn (x)
x

, 0 < δn < 1. (2.14)

Now by the properties of the Stirling series one can find

n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k
+
Sn (x)
x

)
< exp

(
1

12x

)
≤ exp

(
1
12

)
. (2.15)

From (2.12) and (2.15) we find that

n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k

)
=

n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k
+
Sn (x)
x
− Sn (x)

x

)
< exp

(
1
5

)
.

(2.16)
From (2.14) and (2.16) we have

n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k
+
Sn (x)
x

)
=

n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k

)(
1 + 2δn

Sn (x)
x

)
(2.17)

=
n−1∏
k=1

exp
(

B2k

2k (2k − 1)x2k

)
+ 2ηne1/5

Sn (x)
x

(2.18)

for −1 ≤ ηn ≤ 1. Comparing (2.10), (2.11) and (2.18) we find the following expression for
our remainder

Rn (x) =
∑

j≥2n−1

Kj

xj
+ 2ηne1/5

Sn (x)
x

, x ≥ n+ 1 (2.19)
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and

|Rn (x)| ≤

∣∣∣∣∣∣
∑

j≥2n−1

Kj

xj

∣∣∣∣∣∣+ 2e1/5
∣∣∣∣Sn (x)

x

∣∣∣∣ ≤ ∑
j≥2n−1

|Kj |
xj

+
e1/5 |B2n|

n (2n− 1)x2n
. (2.20)

We are going to estimate the value of the sum. Let

f (z) :=
n−1∏
k=1

exp
(

B2k

2k (2k − 1)
z2k

)
=
∑
j≥0

Kjz
j . (2.21)

Hence the Kj coefficients are the coefficients in the Taylor expansion of f . Thus for every
w > 0 we have

Kj =
1

2πi

∫
|v|=w

f (v)
vj+1

dv. (2.22)

From this

|Kj | ≤
1

2π

∫ 2π

0

w
∣∣f (weiϕ)∣∣ dϕ

wj+1
≤ max

0≤ϕ≤2π

∣∣f (weiϕ)∣∣
wj

. (2.23)

Moreover,

∣∣f (weiϕ)∣∣ ≤ n−1∏
k=1

exp
(

|B2k|
2k (2k − 1)

w2k

)
= exp

(
n−1∑
k=1

|B2k|
2k (2k − 1)

w2k

)
. (2.24)

Let w = 1/n, from (2.13)

n−1∑
k=1

|B2k|
2k (2k − 1)

w2k ≤
n−1∑
k=1

4
k (2k − 1)

(
kw

2π

)2k

≤
n−1∑
k=1

4
k (2k − 1)

(
1

2π

)2k

< 1. (2.25)

Hence
∣∣f (weiϕ)∣∣ ≤ e valid when w = 1/n and by (2.23) we finally have

|Kj | ≤ enj . (2.26)

Substituting this into (2.20) and noting that K2n−1 = 0 we obtain

|Rn (x)| ≤
∑

j≥2n−1

enj

xj
+

e1/5 |B2n|
n (2n− 1)x2n

= e
(n
x

)2n 1
1− n/x

+
e1/5 |B2n|

n (2n− 1)x2n
(2.27)

≤ (n+ 1) e
(n
x

)2n
+

8e1/5

n (2n− 1)x2n

( n
2π

)2n
(2.28)

=

(
(n+ 1) e+

8e1/5

n (2n− 1) (2π)2n

)(n
x

)2n
, (2.29)

which completes the proof.

3 Numerical properties

3.1 The computation of the coefficients

From (1.2) we can compute the numerical values of Gk. The Bernoulli numbers start

Bj = 1,−1
2
,
1
6
, 0,− 1

30
, 0,

1
42
, 0,− 1

30
, . . . (j ≥ 0) .
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So the first few values of the Gk coefficients are

G0 = 1

G1 =
1
2
B2 =

1
12

G2 =
1
12
B4 +

1
8
B2

2 =
1

1440

G3 =
1
30
B6 +

1
24
B2B4 +

1
48
B3

2 =
239

362880

G4 =
1
56
B8 +

1
60
B2B6 +

1
288

B2
4 +

1
96
B4B

2
2 +

1
384

B4
2 = − 46409

87091200

Thus the expansion (1.1) starts

Γ (x) ∼
(
x

e

(
1 +

1
12x2

+
1

1440x4
+

239
362880x6

− 46409
87091200x8

+ ...

))x√2π
x
. (3.1)

The following table shows the numerical values of the first eleven coefficients.

G0 1.00000000000000000000000000000000000
G1 0.08333333333333333333333333333333333
G2 0.00069444444444444444444444444444444
G3 0.00065861992945326278659611992945326
G4 -0.00053287817827748383303938859494415
G5 0.00079278588700608376534302460228386
G6 -0.00184758189322033028400606295961969
G7 0.00625067824784941846328836824623616
G8 -0.02901710246301150993444701506844402
G9 0.17718457242491308890302832366796470
G10 -1.37747681703993534399676348903067470

Table with numerical values of Gk.

If we formally write

exp

∑
k≥1

B2k

2k (2k − 1)x2k

 =
∑
k≥0

Gk
x2k

, (3.2)

then the following recurrence holds for k ≥ 1.

Gk =
1
2k

k−1∑
m=0

B2m+2Gk−1−m
2m+ 1

, G0 = 1, (3.3)

which gives the same as above. This can be shown by differentiating both sides of (3.2)
and equating the coefficients of x−2k.

3.2 Numerical comparisons

Although we considered an asymptotic formula, i. e. a formula which is optimized for use
with large values of x, it is for practical purposes also of interest to know the behaviour for
small values of x. Therefore we will compare in this paragraph the numerical performance
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of some asymptotic formula to the Gamma function with our formula in the range x ∈
[0.5 .. 50]. We compare the following approximation formulas [5,6]

(x
e

)x√2π
x

exp
(

1
12x
− 1

360x3
+

1
1260x5

− ...
)

(Stirling) , (3.4)(x
e

)x√2π
x

(
1 +

1
12x

+
1

288x2
− 139

51840x3
− ...

)
(Laplace) , (3.5)

(x
e

)x√2π
x

6

√(
1 +

1
2x

+
1

8x2
+

1
240x3

− ...
)

(Ramanujan) , (3.6)

(x
e

)x√2π
x

(
1 +

1
12x2

+
1

1440x4
+

239
362880x6

− ...
)x

(Nemes) . (3.7)

The second expression is sometimes incorrectly called Stirling’s formula (see [2]).

The following graph shows the relative error of these formulas to the Gamma function.
The plotted quantity is |ln (a (x) /Γ (x))| ≈ |1− a (x) /Γ (x)|. The first computed values
are for x = 0.5. Thick traces indicate a (x) > Γ (x), thin ones a (x) < Γ (x). Color codes
for various families: blue - Stirling, green - Laplace, brown - Ramanujan, red - Nemes
(a (x) denotes the corresponding approximation). The number after a name indicates
the power of (1/x) in the last kept term in the expansion. The following curves overlap:
Laplace 2 overlaps Stirling 1, Ramanujan 2 overlaps Nemes 2 for large x, Nemes 4 over-
laps Nemes Closed, Nemes 6 overlaps Stirling 5. For Nemes Closed formula, see Section
4.1.

Figure 1: Relative errors of Gamma function approximations.

Conclusion. From the graph we see that the first and the third Laplace approximations
outperform the corresponding Ramanujan formulas, however these expansions contain the
same number of terms. Ramanujan 2 gives better approximation than Laplace 2 and
Nemes 2, though the latter is nearly identical for larger values of x. The graph also
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shows that, for equal number of ’correction’ terms, the Nemes formulae are always better
than all the other (e.g., Nemes 4 is better than Stirling 3, Ramanujan 2 and Laplace 2).
It seems that for numerical computation the most useful are the Stirling and Nemes
formulas. These expansions use only half of the powers of the variable contrary to the
Laplace and Ramanujan series. The behavior of the closed formula is very interesting, it
gives approximately the same value as Nemes 4 and a better one than Stirling 3, even
though it contains only one ’correction’ term.

4 Corollaries

4.1 Closed approximation

The structure of the expansion (1.1) induces the following closed approximation to the
Gamma function.

Corollary 1. Let x ≥ 1, then

Γ (x) ∼
(x
e

)x√2π
x

(
1 +

1
15x2

) 5
4
x

. (4.1)

Proof. If |t| < 1

(1 + t)
5
4 = 1 +

5
4
t+

5
32
t2 − 5

128
t3 + ... . (4.2)

Let t =
1

15x2
< 1, then

(
1 +

1
15x2

) 5
4

= 1 +
1

12x2
+

1
1440x4

− 1
86400x6

− ..., (4.3)

which from the approximation is reasonable (compare it with (3.1)).

4.2 Asymptotic expansion of n
√

n!

From Stirling’s formula it is well known that

n
√
n! ∼ n

e
. (4.4)

By our new formula we can easily deduce a complete asymptotic expansion for n
√
n!.

Corollary 2. Let n be a positive integer, then

n
√
n! ∼ n

e

∑
k≥0

Pk (log (2πn))
nk

(4.5)

where Pk is a polynomial in degree k and for every real number x we have

Pk (x) =
k∑
j=0

Vk−j
2jj!

xj , (4.6)

where V2i+1 = 0 and V2i = Gi for i ≥ 0.
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Proof. For positive integer n we have nΓ (n) = n!, thus by our formula

n! ∼
(n
e

)n√
2πn

∑
k≥0

Gk
n2k

n

(4.7)

or
n
√
n! ∼ n

e
2n
√

2πn
∑
k≥0

Gk
n2k

. (4.8)

We know that
2n
√
t = exp

(
1

2n
log t

)
=
∑
j≥0

1
j!

(
log t
2n

)j
, (4.9)

hence setting t = 2πn and applying the definition of Vi gives

n
√
n! ∼ n

e

∑
j≥0

1
j!

(
log (2πn)

2n

)j∑
k≥0

Vk
nk
. (4.10)

Now the Cauchy product of the two series gives the desired form.

Acknowledgment
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