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Abstract

Ramanujan suggested an expansion for the nth partial sum of the harmonic
series which employs the reciprocal of the nth triangular number. This has
been proved in 2006 by Villarino, who speculated that there might also exist
a similar expansion for the logarithm of the factorial. This study shows
that such an asymptotic expansion really exists and provides formulas for
its generic coefficient and for the bounds on its errors.

1 Introduction

1.1 Ramanujan’s expansion

Ramanujan [1,6] proposed, without proof and without a formula for the general term, the
following asymptotic expansion for the partial sum of the harmonic series:

Hn :=

n
∑

k=1

1

k
∼

1

2
log (2m) + γ +

1

12m
−

1

120m2
+

1

630m3
−

1

1680m4
+ ..., (1.1)

where m := n(n+1)
2 is the nth triangular number and γ is the Euler-Mascheroni constant.

The complete proof of this theorem was given in 2006 by M. Villarino [6] who also suggested
that there might exist a series expansion for the logarithm of the factorial in terms of 1

m
.

In this article we prove a formula which represents an affirmative answer to this conjecture.

1.2 The new asymptotic series

The following theorem gives a complete asymptotic expansion for the logarithm of the
factorial in terms of the reciprocal of a triangular number. The proof of the theorem will
be given in Section 2.

Theorem 1. Let m := n(n+1)
2 , where n is a positive integer. Then for every integer r ≥ 1

there exist two numbers, ϑr and κr, 0 < ϑr < 1 and −1 < κr < 1, such that:

2
√

8m + 1
log

(

n!
√

2π

)

=
1

2
log (2m) − 1 +

r
∑

k=1

Gk

mk
+ ϑr ·

Gr+1

mr+1
+ κr ·

(−1)r

2 (r + 1) · 8r+1mr+1
,

(1.2)
where the Gk coefficients are given by

Gk =
(−1)k−1

2k · 8k

k
∑

j=0

(−1)j
(

22j − 2
)

B2j

2j − 1

(

k

j

)

, (1.3)

and Bj denotes the jth Bernoulli number (see [5]).
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Before we prove this, let us first briefly review the history of the Stirling series on which
our proof will be based.

1.3 The history of Stirling’s formula

In 1730, in his Methodus Differentialis [4], Stirling presented his results on the summation
of logarithms. In particular, he gave a series approximation for log 1 + log 2 + ... + log n =
log n! in the form

(

n +
1

2

)

log

(

n +
1

2

)

−
(

n +
1

2

)

+
1

2
log (2π)−

1

24
(

n + 1
2

) +
7

2880
(

n + 1
2

)3 − ... . (1.4)

Stirling gave a recurrence for the coefficients in his series, but he was not able to obtain
an explicit formula for them. The general term for k ≥ 1 is given by

(

21−2k − 1
)

B2k

2k (2k − 1)
(

n + 1
2

)2k−1
, (1.5)

where Bk denotes the kth Bernoulli number. After seeing Stirling’s results, De Moivre in
his Miscellaneis Analyticis Supplementum discovered a much simpler approximation:

(

n +
1

2

)

log n − n +
1

2
log (2π) +

1

12n
−

1

360n3
+ ... . (1.6)

This time the formula for the general term is

B2k

2k (2k − 1) n2k−1
. (1.7)

De Moivre’s series was associated with Stirling’s name because the constant 1
2 log (2π) was

determined by him. Both of the series are divergent for all values of n, but the partial
sums can be made an arbitrarily good approximation for large enough n (see [2]).

Note that Ramanujan [7] also gave an approximation for log n! in the form

log n! ≈ n log n − n +
1

2
log π +

1

6
log

(

8n3 + 4n2 + n +
1

30

)

. (1.8)

2 Proof of the new asymptotic expansion

The proof of our theorem is based on the following more precise version of the Stirling
series (see [3]).

Theorem 2. Let n be a positive integer. Then for every integer r ≥ 1 there exists a
number ρr, 0 < ρr < 1, for which the following expression holds:

1
(

n + 1
2

) log

(

n!
√

2π

)

= log

(

n +
1

2

)

− 1 +

r
∑

k=1

Sk
(

n + 1
2

)2k
+ ρr ·

Sr+1
(

n + 1
2

)2r+2 , (2.1)

where the Sk coefficients are given by

Sk =

(

21−2k − 1
)

B2k

2k (2k − 1)
. (2.2)
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Proof. First, let us modify the term log
(

n + 1
2

)

:

log

(

n +
1

2

)

=
1

2
log

(

n +
1

2

)2

=
1

2
log

(

2m +
1

4

)

=
1

2
log

(

2m

(

1 +
1

8m

))

=
1

2
log (2m) +

1

2
log

(

1 +
1

8m

)

=
1

2
log (2m) +

1

2

∑

i≥1

(−1)i−1

i · 8imi

=
1

2
log (2m) +

r
∑

i=1

(−1)i−1

2i · 8imi
+ δr,

where

δr :=
∑

i≥r+1

(−1)i−1

2i · 8imi
.

To obtain the series expansion in terms of 1
m

, we apply the binomial theorem:

r
∑

k=1

Sk
(

n + 1
2

)2k
=

r
∑

k=1

Sk
(

2m + 1
4

)k
=

r
∑

k=1

Sk

(2m)k

(

1 +
1

8m

)−k

=

r
∑

k=1

Sk

(2m)k

∑

l≥0

(

−k

l

)

1

8lml

=

r
∑

k=1

Sk

2k

∑

l≥0

(

k + l − 1

l

)

(−1)l

8lmk+l
.

Replacing every k by k − l, and every l by k − j we obtain

r
∑

k=1

Sk
(

n + 1
2

)2k
=

r
∑

k=1







k
∑

j=1

Sj

2j

(

k − 1

k − j

)

(−1)k−j

8k−j







1

mk
+ εr,

where

εr :=

r
∑

k=1

Sk

2k

∑

l≥r−k+1

(

k + l − 1

l

)

(−1)l

8lmk+l
.

Now, collecting all the partial results

1
(

n + 1
2

) log

(

n!
√

2π

)

=
1

2
log (2m) +

r
∑

i=1

(−1)i−1

2i · 8imi
− 1 +

r
∑

k=1







k
∑

j=1

Sj

2j

(

k − 1

k − j

)

(−1)k−j

8k−j







1

mk

+ δr + εr + ρr ·
Sr+1

(

n + 1
2

)2r+2

=
1

2
log (2m) − 1 +

r
∑

k=1







(−1)k−1

2k · 8k
+

k
∑

j=1

Sj

2j

(

k − 1

k − j

)

(−1)k−j

8k−j







1

mk

+ δr + εr + ρr ·
Sr+1

(

n + 1
2

)2r+2 .
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We have thus derived a series expansion in terms of 1
m

, but the general term looks different
than in (1.3). However, inserting (2.2) into our general coefficient, we get

Gk =
(−1)k−1

2k · 8k
+

k
∑

j=1

Sj

2j

(

k − 1

k − j

)

(−1)k−j

8k−j

= (−1)k−1







1

2k · 8k
+

k
∑

j=1

(

21−2j − 1
)

B2j

2j · 2j (2j − 1)

(

k − 1

k − j

)

(−1)1−j

8k−j







= (−1)k−1







1

2k · 8k
+

k
∑

j=1

(

21−2j − 1
)

B2j

2j (2j − 1)

1

2k

(

k

j

)

(−1)1−j

8k−j







=
(−1)k−1

2k · 8k







1 +

k
∑

j=1

(

21−2j − 1
)

B2j

2j (2j − 1)

(

k

j

)

(−1)1−j

8−j







=
(−1)k−1

2k · 8k







1 +

k
∑

j=1

(−1)j
(

22j − 2
)

B2j

2j − 1

(

k

j

)







=
(−1)k−1

2k · 8k

k
∑

j=0

(−1)j
(

22j − 2
)

B2j

2j − 1

(

k

j

)

,

which is the desired form of Gk.

Since
(

n + 1
2

)−1
= 2√

8m+1
, we now have

2
√

8m + 1
log

(

n!
√

2π

)

=
1

2
log (2m) − 1 +

r
∑

k=1







(−1)k−1

2k · 8k

k
∑

j=0

(−1)j
(

22j − 2
)

B2j

2j − 1

(

k

j

)







1

mk

+ δr + εr + ρr ·
Sr+1

(

n + 1
2

)2r+2 .

It remains to show that for r ≥ 1 the error term has the properties specified in the theorem.
To estimate the error, we use the fact that a convergent alternating series whose terms
decrease in absolute value monotonically to zero evaluates to any of its partial sums and
a remainder comprised between zero and the first neglected term. It follows that

υr := ρr ·
Sr+1

(

n + 1
2

)2r+2 = ρr ·
Sr+1

(2m)r+1

(

1 +
1

8m

)−(r+1)

= σr ·
Sr+1

(2m)r+1 ,

δr =
∑

i≥r+1

(−1)i−1

2i · 8imi
= τr ·

(−1)r

2 (r + 1) · 8r+1mr+1
,

εr =
r
∑

k=1

Sk

2k

∑

l≥r−k+1

(

k + l − 1

l

)

(−1)l

8lmk+l
=

r
∑

k=1

Sk

2k

{

ωk ·
(

r

r − k + 1

)

(−1)r−k+1

8r−k+1

}

1

mr+1

= Ωr ·
r
∑

k=1

Sk

2k

{

(

r

r − k + 1

)

(−1)r−k+1

8r−k+1

}

1

mr+1
,

where 0 < σr, τr, ωk, Ωr < 1 for 1 ≤ k ≤ r and r ≥ 1. Moreover, 0 < Ωr < 1 because
for a fixed r, all the terms with the ωk weights have the same sign. Since υr and εr have
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always the same sign (positive for odd r and negative for even r), we have

υr + εr = σr ·
Sr+1

(2m)r+1 + Ωr ·
r
∑

k=1

Sk

2k

{

(

r

r − k + 1

)

(−1)r−k+1

8r−k+1

}

1

mr+1

= ϑr ·
r+1
∑

k=1

Sk

2k

{

(

r

r − k + 1

)

(−1)r−k+1

8r−k+1

}

1

mr+1
,

where 0 < ϑr < 1. But δr has always the opposite sign so that we can set τr = ϑr + κr,
where −1 < κr < 1. Finally

ϑr ·

(

(−1)r

2 (r + 1) · 8r+1mr+1
+

r+1
∑

k=1

Sk

2k

{

(

r

r − k + 1

)

(−1)r−k+1

8r−k+1

}

1

mr+1

)

= ϑr ·
(−1)r

2 (r + 1) · 8r+1mr+1

(

1 +
r+1
∑

k=1

(

21−2k − 1
)

B2k

2k · (2k − 1)

{

(

r + 1

k

)

(−1)−k+1

8−k

})

= ϑr ·
(−1)r

2 (r + 1) · 8r+1mr+1

(

1 +
r+1
∑

k=1

(−1)k
(

22k − 2
)

B2k

(2k − 1)

(

r + 1

k

)

)

= ϑr ·
(−1)r

2 (r + 1) · 8r+1mr+1

r+1
∑

k=0

(−1)k
(

22k − 2
)

B2k

(2k − 1)

(

r + 1

k

)

= ϑr ·
Gr+1

mr+1
.

This completes the proof of the theorem.

Conjecture. Numerical computations imply that for r ≥ 2 we can use κr = 0 in (1.2).

Appendix A: The following table gives the first ten coefficients of the asymptotic series.

G1
1
24 G6

7619
138378240

G2 − 1
1440 G7 − 7439

92252160

G3 − 1
4032 G8

2302207
13442457600

G4
1

8960 G9 − 39982913
81265766400

G5 − 23
380160 G10

242180131
132433100800

Table with numerical values of Gk.
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