Nuclear Magnetization Evolution During the Switching Time in Field Cycling NMR

Ester Maria Vasini and Stanislav Sykora
Extra Byte Snc, Via Raffaello Sanzio 22c, Castano Primo (MI), 20022 Italy

E-mail: em.vasini@extrabyte.eu

Introduction

Magnetic Resonance techniques permit to measure the evolution of the longitudinal component of nuclear magnetization. In a suitable magnetic field $\mathrm{B}_{\text {acc }}$ the magnitude of this component ($M_{1 I}$) can be assessed at any desired moment by applying a 90 -degrees RF pulse and acquiring the subsequent free-induction
decay (FID). In static magnetic fields, various pulse sequence are used to measure either the longitudinal or the transverse "relaxation curve"" and in the most decay (FID). In static magnetic fields, various pulse sequence are used to measure either the longitudinal or the transverse "relaxation curves and, in the most
common mono-exponential cases, to estimate the relaxation rates R_{1} and R_{2}, respectively. This is part of general NMR know-how and will not be discussed here Relaxation theories show, however, that an isolated value of R_{1} (or R_{2}) is not particularly useful, while a lot more information - in general regarding molecular dynamics - can be obtained from the dependencies of these values on temperature and/or on the strength of the magnetic field (B_{r}) in which the relaxation occurs. Of particular interest are the dependencies $\mathrm{R}_{1}\left(\mathrm{~B}_{\mathrm{r} / 2}\right)$ measured over several orders of magnitude of Brlx values, called NMR dispersion curves, or NMRD profiles. In general, such profiles are measured on instruments in which the magnetic field perceived by the sample can be commuted between four possible field values: zero (or a vary low one), a polarization field $\mathrm{B}_{\text {pol }}$, an acquisition field $\mathrm{B}_{\text {acq }}$ at which signals can be acquired, and a freely settable relaxation field $\mathrm{B}_{\mathrm{rlx}}$ at which the relaxation rate of the sample is to be estimated. The field switching can be achieved by mechanical shuffling of the sample between areas with the different field strengths (the field-cycling, or FC-NMR methods), a procedure that is relatively slow (switching times of the order of $20-40 \mathrm{~ms}$). Alternatively, the sample can be fixed and the magnetic field (generated by a current energizing a special solenoid) is commuted electronically by switching the current. The latter method, called fast-field-cycling or FFC-NMR) is much faster (switching times of the order of 1-2 ms) but incompatible with high-resolution NMR spectroscopy. Whichever field switching method is used, it is evident that ideally the $T_{1}=1 / R_{1}$ relaxation time of the measured sample should be much longer than the switching times compatible with the fastest achievable field-slewing rates. The fact is that the switching waveshape the field is following during the switching time may play a role in the phenomenon, and that it can be neglected only when the whole switching process occurs in a time negligible in comparison to the relaxation time T_{1}. This would mean that samples with T_{1} smaller than several $m s\left(R_{1}\right.$ in the range $\left.100-1000\right)$ might not be reliably measured on present-day FFC instruments. Yet practical experience shows (see the Figure on the right) that this is not true - experience shows that one can measure samples with R_{1} greater than 1000 , in some cases even up to 10000 !!! Much depends upon the exact field-switching waveshape, with a large advantage deriving from keeping the latter linear (i.e., switching at a controlled constant field-slewing rate).
This poster indicates the way to analyze this kind of phenomena. The results lead to several interesting insights and the resulting capability to simulate them computationally opens new avenues to the optimization of the FFC technology. Unfortunately, the thematic
comprehensive article will follow which will include also the aspects we can not mention here for lack of space. comprehensive article will follow which will include also the aspects we can not mention here for lack of space.
In the schematic graphic appearing in this poster, blue curves represent the magnetic field strength, red curves the nuclear magnetization, green curves the
 field, the magnetization in that field, and absolute values).

Theory

In mono-exponential cases in a fixed magnetic field, the magnetization evolution curves are well described by a simple exponential function (Eq.1). The longitudinal magnetization $M(t)$ starts at some value $M(0)$ and then pursuits the magnetic field, tending to decrease exponentially the initial difference $M(0)$ - $M(\infty)$, where $M(\infty)$ is proportional to the field B (Eqs 2-3). Note that for display properties, it is possible to normalize the proportionality constant c to 1.0 . Eqs $1-3$ are compatible with the simple differential Eq. 4 and the specified 'border' values at $\mathrm{t}=0$ and $\mathrm{t} \rightarrow \infty$. Equation 4 stresses the point that the magnetization always tries to reach the equilibrium, field-dependent value $\mathrm{C}^{*} \mathrm{~B}$, and that it does so at a rate proportional to the current difference between $\mathrm{c}^{*} \mathrm{~B}$ and M . The proportionality constant R is the relaxation rate. Now, when the field B is variable, Eq. 4 gets modified as shown in Eq. 5 (proving that this passage is legitimate is not quite trivial, but it is true). Moreover, in those (very common) cases in which the relaxation rate is field-dependent, $R=R(B)$, $E q$. 5 generalizes further to Eq .6 which is the final master equation for the evolution of longitudinal nuclear magnetization in magnetic fields undergoing isotropic variations. It is an instance of a pursuit differential equation which, in a general case, requires numerica integration to compute the resulting pursuit curve. Fortunately, the numeric approach is quite easy and we have the code to solve it for any given $B(t)$ and $R(B)$ input functions.

1. $M(t)=\exp \left(-R^{*} t\right)^{*}[M(0)-M(\infty)]+M(\infty)$ 2. $M(\infty)=c^{*} B$
2. $M(t)=\exp \left(-R^{*} t\right) *\left[M(0)-c^{*} B\right]+c^{*} B$
3. $d M / d t=-R^{*}\left[M-c^{*} B\right]$
4. $d M / d t=-R^{*}\left[M-c^{*} B(t)\right]$
5. $d M / d t=-R(B(t))^{*}\left[M-c^{*} B(t)\right]$

Simulations with constant $R(B) \equiv R_{1}=1000\left[\mathbf{s}^{-1}\right], T_{1}=1 \mathbf{m s}$, which is of the same type (and of similar order of magnitude) as observed with the 1 M dysprosium aquaions.
The Figures below exemplify the field pursuit curves which the magnetization follows when the field-switching waveform is linear. The graphs $3 \mathrm{a}-4 \mathrm{c}$ are closely related to the graphs $1 \mathrm{a}-1 \mathrm{c}$ above. The only difference is that the switching times are no longer zero. In Figures $3 a, 3 b, 4 a$ and $4 b$ the first switching, the one between the initial field (be it $B_{p o l}$ or 0) and $B_{r \mid x}$ is set to 1 ms, while the second one, from $B_{r \mid x}$ to $B_{a c i}$ is computed so that the field slewing rate remains the same as in the first interval. In Figures 3 c and 4 c , the green signal-versus-tau curves are computed assuming a wide range of different switching time settings (some unrealistically fast, considering that today's technology which, even in FFC, can not switch between extreme field values in less than about 1 ms). Compared to the ideal case of infinitely fast switching, the differences one observes are:

During the switching intervals, $M(t)$ evolves in a way which is neither linear nor exponential (in this simple case one can still derive an explicit solution of the master equation, but the brute force approach is simpler).
With the switching time set to 1 ms , the measured signal values are substantially different and, though computable, not quite intuitive.
he signal-versus-tau curves (which are those actually used to estimate the relaxation rate) are now quite strongly dependent on the switching time value. What does change are the initial and final values, not the relaxation rate oefficient (this may somewhat strain belief, but there exists a theoretical proof of that, and it is born out empirically). When field switching times are shorter than about $0.1 / R$, we have (almost) the ideal situation with maximum range of the measured signa-versus-tau curve. When he swiching is slower, the signal curves get progressively flater, making it progressively more and more diffcult to est mate from them the relaat the switching times get to about $1.0 / \mathrm{R}$, the useful range is down by almost an order of magnitude. Which may be still sufficient to get reasonable results, but it implies much longer data acquisition times down) or gain (when switching up) during the switching intervals becomes more serious and the estimate of R from the acquired data becomes more difficult.

Simulations with variable $\mathbf{R}(\mathbf{B})$, compatible with the experimental data for the parafilm shown at the top of this poster

The series of simulated data show below corresponds in all respects to the preceding one, except that the relaxation rate $R(B)$ is assumed to be even higher at $B=0\left(R=6400\left[s^{-1}\right]\right)$ but than drops down following a rather steep dispersion curve which is characteristic of many important compounds and materials (many polymers, waxes, tissues, etc). Considering the fact that at very low fields the considered sample relaxes much faster than the preceeding one, one might expect considerable problems. However, the simulations as well as the experiments show that this is not so. The final differences in the green signal-versus-tau curves are surprisingly modest. This is no doubt due to the fact that, during the field switching, the interval during which the sample is exposed to a field in which it relaxes very fast is just a small fraction of the total switching time. It is thefore actually easier to measure an NMRD profile of a sample like parafilm than to mearure a sample like dysprosium aquaion, even if part of its dispersion profile reaches substantially higher relaxation rates.
$\underbrace{08}_{0}$

Conclusions

We have developed a differential master pursuit equation which describes the evolution of longitudinal nuclear magnetization in varying magnetic fields, such as those present in FC-NMR.
We have also coded an Utility to numerically integrate this equation for even the most general cases With this tool we have confirmed earlier insights regarding NMRD measurements of samples with very high relaxation rates (T1 comparable to or smaller than the switching time).
We have also gained a number of additional insights.
There is more work in progress...

References
11
11 Bloch F.

This work has been partially supported by Mestrelab research sl. (Spain)

