Seven Conjectures of NMR Relaxometry

by Stan Sykora (www.ebyte.it)

Given a stochastic [spin] Hamiltonian

$$
\mathbf{H}=\mathbf{H}_{0}+\mathbf{S}(\mathrm{t}),\langle\mathbf{S}(\mathrm{t})\rangle=0,
$$

under certain conditions (secular vs stochastic time scales)
one obtains a secular equation for the density matrix

$$
\frac{\mathrm{d}}{\mathrm{dt}} \boldsymbol{\sigma}(\mathrm{t})=-\frac{1}{2} \boldsymbol{J}\left(\mathbf{H}_{0}\right)\left\{\boldsymbol{\sigma}(\mathrm{t})-\boldsymbol{\sigma}_{0}\right\}
$$

$$
\boldsymbol{J}\left(\mathbf{H}_{0}\right)=\int_{-\infty}^{\infty} \mathrm{d} \tau \boldsymbol{C}(\tau)=\int_{-\infty}^{\infty}<\boldsymbol{S}^{*}(0) \boldsymbol{S}^{*}(\tau)>\mathrm{d} \tau
$$

and

$$
\mathbf{S}^{\star}(0)=\mathbf{S}(0) \quad \mathbf{S}^{\star}(\tau)=e^{i \boldsymbol{H}_{0} \top} \mathbf{S}(\tau) \mathrm{e}^{-\mathrm{i} \boldsymbol{H}_{0} \tau}
$$

with the italics denoting commutation super-operators

This is where [relaxation] correlation functions $C(\tau)$, spectral densities $\boldsymbol{J}(\omega)$ and relaxation rates $\mathbf{R}_{\|}(\omega)$ and $\mathbf{R}_{\perp}(\omega)$ for $<\sigma . \mathbf{m}_{\|}>$and $<\sigma . \mathbf{m}_{\perp}>$ come from. $\left(\omega=H_{0} / \hbar\right)$

Spin Hamiltonian:
 has moderate complexity, is well studied and known

$$
\mathbf{H}=\mathbf{H}_{\mathbf{Z}}+\mathbf{H}_{S R}+\mathbf{H}_{\mathrm{C}}+\mathbf{H}_{\mathrm{DD}}+\mathbf{H}_{\mathrm{DE}}+\mathbf{H}_{\mathbf{F}}+\mathbf{H}_{\mathbf{J}}+\mathbf{H}_{\mathbf{Q}}+
$$

$$
\begin{array}{ll}
\quad \text { Energy }= & \\
\text { Interaction with external field(s) } & \mathrm{Z} \text { (Zeeman) } \\
\text { + spin-rotation interactions } & \mathrm{SR} \\
\text { + chemical shifts } & \mathrm{C} \\
\text { + dipolar interactions with other nuclei } & \mathrm{DD} \\
\text { + dipolar interactions with electrons } & \mathrm{DE} \\
\text { + contact interactions with electrons } & \mathrm{F} \text { (Fermi) } \\
\text { + indirect couplings } & \mathrm{J} \\
\text { + quadrupolar interactions } & \mathrm{Q} \\
\text { + etc. } &
\end{array}
$$

Molecular dynamics models: have considerable complexity; are mostly guesses

- Ever-growing, amazing number of [equally amazing] models
- Sub-molecular, molecular, oligo-molecular, and collective motions
- Huge range of correlation times (1 Hz to tens of GHz)
- Observable by many methods which should be always compared

Molecular motions are harder to manage than spin interactions:

They are the "weak spot" of MR Relaxometry Theory but ...
... they are the principal goal of MR Relaxometry Practice

Summing it up (kind of)

Interactions:

- DD Dipole-dipole interaction between nuclei
- DE Nucleus-electron dipole-dipole interaction
- CE Nucleus-electron contact interaction (the Fermi term)
- NQ Nuclear quadrupole interaction with local electric field gradients
- SR Spin rotation interaction
- CSA Chemical shift anisotropy (part of CS)
- CS Chemical shift (isotropic part) when not constant (exchange)
- JA J coupling anisotropy (part of J)
- J Scalar part of J coupling when not constant (exchange)
- etc. including interactions with SPIO's and other "exotica"

Motions:	
- Rot	Rotational diffusion (global, unconstrained)
- IRot	Internal rotations (partial, tunnelling, kinks, you name it ...)
- Rept	Reptations
- Libr	Librations
- Vibr	Vibtations with angular components (bending motions)
- Trans	Translations (free or constrained)
- Crawl	on surfaces, like Kimmich's caterpillars
- Hits	Collisions (like against pore walls)
- Jump	across barriers, between hydration shells, and the like
- Coll	Collective motions (like in liquid crustals)
- etc.	like Halle's flickering acquducts in proteins, ...

Combinatorics weighs in: the Grid of Formulas

Principal interactions versus principal types of motions

	Rot	IRot	Rept	Libr	Vibr	Trans	\ldots
DD	BPP	$\mathrm{F}_{1 \mathrm{~b}}$	$\mathrm{~F}_{1 \mathrm{c}}$	$\mathrm{F}_{1 \mathrm{~d}}$	$\mathrm{~F}_{1 \mathrm{e}}$	$\mathrm{F}_{1 \mathrm{f}}$	\ldots
DE	$\mathrm{F}_{2 \mathrm{a}}$	$\mathrm{F}_{2 \mathrm{~b}}$	$\mathrm{~F}_{2 \mathrm{c}}$	$\mathrm{F}_{2 \mathrm{~d}}$	$\mathrm{~F}_{2 \mathrm{e}}$	$\mathrm{F}_{2 \mathrm{f}}$	\ldots
CE	$\mathrm{F}_{3 \mathrm{a}}$	$\mathrm{F}_{3 \mathrm{~b}}$	$\mathrm{~F}_{3 \mathrm{c}}$	$\mathrm{F}_{3 \mathrm{~d}}$	$\mathrm{~F}_{3 \mathrm{e}}$	$\mathrm{F}_{3 \mathrm{f}}$	\ldots
NQ	$\mathrm{F}_{4 \mathrm{a}}$	$\mathrm{F}_{4 \mathrm{~b}}$	$\mathrm{~F}_{4 \mathrm{c}}$	$\mathrm{F}_{4 \mathrm{~d}}$	$\mathrm{~F}_{4 \mathrm{e}}$	$\mathrm{F}_{4 \mathrm{f}}$	\ldots
SR	$\mathrm{F}_{5 \mathrm{a}}$	$\mathrm{F}_{5 \mathrm{~b}}$	$\mathrm{~F}_{5 \mathrm{c}}$	$\mathrm{F}_{5 \mathrm{~d}}$	$\mathrm{~F}_{5 \mathrm{e}}$	$\mathrm{F}_{5 \mathrm{f}}$	\ldots
CSA	$\mathrm{F}_{6 \mathrm{a}}$	$\mathrm{F}_{6 \mathrm{~b}}$	$\mathrm{~F}_{6 \mathrm{c}}$	$\mathrm{F}_{6 \mathrm{~d}}$	$\mathrm{~F}_{6 \mathrm{e}}$	$\mathrm{F}_{6 \mathrm{f}}$	\ldots
\ldots							

Leading terms formulas: 100+

Combinatorics weighs in: the SuperGrid of Formulas

Relaxation is a second-order phenomenon!
Cross terms may be sometimes small ($\approx 1-15 \%$) and sometimes forbidden, but they are many and enough of them are not really negligible:

formulas $\mathrm{F}_{\mathrm{m} \alpha, n \beta}$

If we have N leading-term relaxation formulas, the total number of potentially useful ones is

$$
\approx 0.5 * 0.5 * \mathrm{~N}(\mathrm{~N}+1)
$$

All formulas of potential interest: $\boldsymbol{\approx 1 0 0 0}$

BPP formula ... just one case among hundreds

Combines dipole-dipole interaction with molecular reorientations

$$
\begin{aligned}
& \mathrm{R}_{1} \equiv \frac{1}{\mathrm{~T}_{1}}=\frac{\hbar^{2} \gamma^{4}}{\mathrm{~d}^{6}} \mathrm{I}(\mathrm{I}+1) \mathrm{P}_{1}(\tau, \omega) \\
& \mathrm{P}_{1}(\tau, \omega)=\frac{2}{5} \mathrm{~J}(\tau, \omega)+\frac{8}{5} \mathrm{~J}(\tau, 2 \omega) \\
& \mathrm{J}(\tau, \omega)=\frac{\tau}{1+(\omega \tau)^{2}}
\end{aligned}
$$

$$
\mathrm{R}_{2} \equiv \frac{1}{\mathrm{~T}_{2}}=\frac{\hbar^{2} \gamma^{4}}{\mathrm{~d}^{6}} \mathrm{I}(\mathrm{I}+1) \mathrm{P}_{2}(\tau, \omega)
$$

$$
\mathrm{P}_{2}(\tau, \omega)=\frac{12}{11} \mathrm{~J}(\tau, 0)+\frac{2}{11} \mathrm{~J}(\tau, \omega)+\frac{8}{11} \mathrm{~J}(\tau, 2 \omega)
$$

This is only one of the leading terms!
! But this one does have a pivotal position !
(Mother of all Relaxation Formulas)

BPP: one graphical rendering

$$
P(\tau, f)=J_{\tau}(\omega)+4 J_{\tau}(2 \omega) \text {, where } J_{\tau}(\omega)=2 \tau /\left[1+(\omega \tau)^{2}\right] \text { and } \omega=2 \pi f
$$

for a pair of spin $1 / 2$ nuclides of the same kind under isotropic rotational diffusion (dipolar interation)

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

BPP: another graphical rendering

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

Example of a model: log-normal distribution of τ values

Fig.1. Log-normal stretched dispersion functions $d_{1 \sigma}(\omega, \tau)$ and $d_{2 \sigma}(\omega, \tau)$ plotted against $\omega \tau \mathrm{m}$ for various values of σ. The bold lines correspond to $\sigma=0$ (clasical BPP shape). The other lines correspond to $\sigma=1,2,3,4$, and 5 . A small offset (0.001) has been added in order to simulate the effect of background high-frequency motions.

A wide range of profiles ...

.. (1) Parafilm M
.. (2) $2.1 \mathrm{M} \mathrm{Dy}\left(\mathrm{ClO}_{4}\right)_{3}$ in $\mathrm{H}_{2} \mathrm{O}$
.. (3) 2 mM MnCl 2 in $\mathrm{H}_{2} \mathrm{O}$
.. (4) Egg yolk
.. (5) $10 \mathrm{mM} \mathrm{Gd}^{3+}$ in $\mathrm{D}_{2} \mathrm{O}$
.. (6) Egg albumen

Ferrante G., Sykora S., Stelar srl,
Technical Aspects of Fast Field Cycling in Advances in Inorganic Chemistry, Editors van Eldik R., Bertini I., Elsevier 2005 (ISBN 0-120-23657-5), Vol.57. (link to draft)

The Seven Conjectures

1) $R_{1}=R_{2}$ at $\omega=0$ in all isotropic systems
2) $R_{1} \leq R_{2}$ at any ω
3) $\mathrm{dR}_{1} / \mathrm{d} \omega=\mathrm{dR}_{2} / \mathrm{d} \omega=0$ at $\omega=0$
4) $\mathrm{R}_{1}=\mathrm{R}_{2}$ at an $\omega_{0}>0$, then $\mathrm{R}_{1}=\mathrm{R}_{2}=$ constant for any $0 \leq \omega \leq \omega_{0}$

In the absence of hetero-relaxation (quad glitches, paramagnetics, SPIO), at any ω :
5) $\mathrm{dR}_{1} / \mathrm{d} \omega \leq 0$ and $\mathrm{dR}_{2} / \mathrm{d} \omega \leq 0$
6) $-d \ln R_{1} / d \ln \omega \leq 2$, $-d \ln R_{2} / d \ln \omega \leq 1$
7) $\mathrm{R}_{2}(0) / \mathrm{R}_{2}(\omega) \leq 11 / 6=>\ln \mathrm{R}_{2}(0)-\ln \mathrm{R}_{2}(\omega) \leq \ln (11 / 6) \cong 0.26$

Conjecture [1]
$\mathbf{R}_{\mathbf{1}}(\mathbf{0})=\mathbf{R}_{\mathbf{2}} \mathbf{(0)}$ (R_{1} and R_{2} meet at origin)

This is not really a conjecture, because of the imperatives of symmetry

$$
\text { (} \omega=0 \Rightarrow \text { no field } \Rightarrow \text { no externally imposed axial anisotropy) }
$$

Where we expect this to break down:

Wherever $\omega=0$ does not imply $\mathrm{B}_{0}=0$:

- Presence of local magnetic fields (ferromagnetic resonance)
- NQR (in solids, a local axis is defined by the electric field gradient)
- Zero-field splittings (EPR in solids)

In all such cases, the very definition of $\mathbf{R}_{\mathbf{2}}$ becomes problematic

Conjecture [1], a consideration using BPP formulas

$$
\mathbf{R}_{1}(0)=R_{2}(0)
$$

??? Is it trivial when it comes to formulas ???

$$
\begin{array}{ll}
\mathrm{R}_{1} \equiv \frac{1}{\mathrm{~T}_{1}}=\frac{\hbar^{2} \gamma^{4}}{\mathrm{~d}^{6}} \mathrm{I}(\mathrm{I}+1) \mathrm{P}_{1}(\tau, \omega), & \mathrm{R}_{2} \equiv \frac{1}{\mathrm{~T}_{2}}=\frac{\hbar^{2} \gamma^{4}}{\mathrm{~d}^{6}} \mathrm{I}(\mathrm{I}+1) \mathrm{P}_{2}(\tau, \omega) \\
\mathrm{P}_{1}(\tau, \omega)=\frac{2}{5} \mathrm{~J}(\tau, \omega)+\frac{8}{5} \mathrm{~J}(\tau, 2 \omega), & \mathrm{P}_{2}(\tau, \omega)=\frac{12}{11} \mathrm{~J}(\tau, 0)+\frac{2}{11} \mathrm{~J}(\tau, \omega)+\frac{8}{11} \mathrm{~J}(\tau, 2 \omega) \\
\mathrm{J}(\tau, \omega)=\frac{\tau}{1+(\omega \tau)^{2}}, &
\end{array}
$$

Not quite:

$$
2 / 5+8 / 5=12 / 11+2 / 11+8 / 11
$$

In this case, it comes out from Clebsch-Gordon coefficients of the rotation group, but it turns out also for translations, and any other types of motions.

Conjecture [2]

$\mathbf{R}_{\mathbf{1}}(\boldsymbol{\omega}) \leq \mathbf{R}_{\mathbf{2}}(\boldsymbol{\omega})$ at any ω

This comes out of every theoretical model, and it is so well confirmed by experiments, that one suspects the existence of a very conceptual reason, something like:
"if it were not true, we could use spins to build a perpetuum mobile" or maybe "if it were not true, we could overcome Boltzmann distribution"

But so far neither I, nor anybody else, could figure it out !
That is why I feel compelled to classify it as a conjecture

Conjecture [2], a theoretical model example

$\mathbf{R}_{\mathbf{1}}(\omega) \leq \mathbf{R}_{\mathbf{2}}(\omega)$

Fig.1. Log-normal stretched dispersion functions $d_{1 \sigma}(\omega, \tau)$ and $d_{2 \sigma}(\omega, \tau)$ plotted against $\omega \tau \mathrm{m}$ for various values of σ. The bold lines correspond to $\sigma=0$ (clasical BPP shape). The other lines correspond to $\sigma=1,2,3,4$, and 5 . A small offset (0.001) has been added in order to simulate the effect of background high-frequency motions.

Conjecture [3]

At $\omega=0, \mathrm{dR}_{1} / \mathrm{d} \omega=\mathrm{dR}_{2} / \mathrm{d} \omega=0$ (curves are flat at origin)

This requires the correlation functions $\mathrm{C}(\tau)$ to decay fast enough with respect to $\cos (\omega \tau)$ for small ω. But for $\omega \rightarrow 0, \cos (\omega \tau) \rightarrow 1-\omega^{2} \tau^{2}$ which means that this condition is mathematically quite weak.

Practically, it is sufficient that $\mathrm{C}(\tau)$ be integrable over the interval $(0, \infty)$

Conjecture [4]

If $\mathbf{R}_{1}\left(\omega_{0}\right)=\mathbf{R}_{2}\left(\omega_{0}\right)$ at some $\omega_{0}>0$, then $\mathbf{R}_{\mathbf{1}}(\omega)=\mathbf{R}_{\mathbf{2}}(\omega)=$ constant for every $\omega \leq \omega_{0}$

In other words:
The equality of R_{1} and R_{2} at some frequency ω_{0} is possible if, and only if, the curves $R_{1}(\omega)$ and $R_{2}(\omega)$ are identical and completely flat (dispersionless) in the whole interval $\left(0, \omega_{0}\right)$.

This is a very strong statement which holds in all theoretical models. Experimental verification is good, but limited to low-viscosity diamagnetic liquids - the only systems where R_{1} and R_{2} can be equal even at quite high Larmor frequences.

Conjecture [5]

$\mathbf{d} \mathbf{R}_{1} / \mathrm{d} \omega \leq 0, \mathrm{~d} \mathbf{R}_{2} / \mathrm{d} \omega \leq 0$ (curves are non-increasing)

Valid only in absence of heteronuclear cross-relaxation (no quad glitches, paramagnetics, SPIO)

Conjecture [6]
$-\mathrm{d} \ln R_{1} / \mathrm{d} \ln \omega \leq 2$ (curves are never steeper than that)

Conjecture [6], a theoretical model example $-\mathrm{d} \ln R_{1} / \mathrm{d} \ln \omega \leq 2$

Fig.1. Log-normal stretched dispersion functions $d_{1 \sigma}(\omega, \tau)$ and $d_{2 \sigma}(\omega, \tau)$ plotted against $\omega \tau \mathrm{m}$ for various values of σ. The bold lines correspond to $\sigma=0$ (clasical BPP shape). The other lines correspond to $\sigma=1,2,3,4$, and 5 . A small offset (0.001) has been added in order to simulate the effect of background high-frequency motions.

Conjecture [6], practical examples $-\mathrm{d} \ln \mathrm{R}_{1} / \mathrm{d} \ln \omega \leq 2$

.. (1) Parafilm M
.. (2) $2.1 \mathrm{M} \mathrm{Dy}\left(\mathrm{ClO}_{4}\right)_{3}$ in $\mathrm{H}_{2} \mathrm{O}$
.. (3) 2 mM MnCl 2 in $\mathrm{H}_{2} \mathrm{O}$
.. (4) Egg yolk
.. (5) $10 \mathrm{mM} \mathrm{Gd}^{3+}$ in $\mathrm{D}_{2} \mathrm{O}$
.. (6) Egg albumen

Ferrante G., Sykora S., Stelar srl,
Technical Aspects of Fast Field Cycling in Advances in Inorganic Chemistry, Editors van Eldik R., Bertini I., Elsevier 2005 (ISBN 0-120-23657-5), Vol.57.
(link to draft)

Conjecture [6], more practical examples $-\mathrm{d} \ln R_{1} / \mathrm{d} \ln \omega \leq 2$

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

Conjecture [7]
 $\ln \mathbf{R}_{\mathbf{2}}(0)-\ln \mathbf{R}_{\mathbf{2}}(\omega) \leq \ln (11 / 6) \cong 0.26$

In other words: R_{2} can't drop too much!
One might even say that R_{2} is not very 'interesting'

A cool, pragmatic usage:

- Measure $\mathrm{R}_{1}, \mathrm{R}_{2}$ at some fixed frequency ω_{0},
- Guess the likely value of $\mathrm{R}_{1}=\mathrm{R}_{2}$ at $\omega=0 \ldots$.
- ... and you get a fair idea of the R_{1} dispersion profile between 0 and ω_{0}.

Thank you all and

see you again at FFC NMR Relaxometry Meeting in 2015

This document was uploaded with DOI 10.3247/SL4Nmr13.004

