Seven Conjectures of NMR Relaxometry

by Stan Sykora (<u>www.ebyte.it</u>)

Given a stochastic [spin] Hamiltonian

 $H = H_0 + S(t), \langle S(t) \rangle = 0,$

under certain conditions (secular vs stochastic time scales) one obtains a secular equation for the density matrix

$$\frac{d}{dt} \boldsymbol{\sigma}(t) = -\frac{1}{2} \boldsymbol{J}(\boldsymbol{H}_0) \{ \boldsymbol{\sigma}(t) - \boldsymbol{\sigma}_0 \}$$

where

$$\boldsymbol{J}(\boldsymbol{H}_{\scriptscriptstyle 0}) = \int_{-\infty}^{\infty} d\tau \, \boldsymbol{C}(\tau) = \int_{-\infty}^{\infty} < \boldsymbol{S}^{\star}(0) \, \boldsymbol{S}^{\star}(\tau) > d\tau$$

and

S*(0)=**S**(0) **S***(τ)= $e^{iH_0 \tau}$ **S**(τ) $e^{-iH_0 \tau}$

with the italics denoting commutation super-operators

This is where [relaxation] correlation functions $C(\tau)$, spectral densities $J(\omega)$ and relaxation rates $\mathbf{R}_{\parallel}(\omega)$ and $\mathbf{R}_{\perp}(\omega)$ for $\langle \boldsymbol{\sigma}. \mathbf{m}_{\parallel} \rangle$ and $\langle \boldsymbol{\sigma}. \mathbf{m}_{\perp} \rangle$ come from. ($\omega = H_0/\hbar$)

Presented at FFC Relax, Torino, Italia, 23-25 May 2013 DOI of this document: 10.3247/SL4Nmr13.004

Spin Hamiltonian: has moderate complexity, is well studied and known

$\mathbf{H} = \mathbf{H}_{\mathbf{Z}} + \mathbf{H}_{\mathbf{SR}} + \mathbf{H}_{\mathbf{C}} + \mathbf{H}_{\mathbf{DD}} + \mathbf{H}_{\mathbf{DE}} + \mathbf{H}_{\mathbf{F}} + \mathbf{H}_{\mathbf{J}} + \mathbf{H}_{\mathbf{Q}} + \mathbf{H}_{\mathbf{D}} + \mathbf{H}$

Energy =Interaction with external field(s) Z (Zeeman) + spin-rotation interactions SR + chemical shifts С + dipolar interactions with other nuclei DD+ dipolar interactions with electrons DE + contact interactions with electrons F (Fermi) + indirect couplings J + quadrupolar interactions Q

+ etc.

Molecular dynamics models: have considerable complexity; are mostly guesses

- Ever-growing, amazing number of [equally amazing] models
- Sub-molecular, molecular, oligo-molecular, and collective motions
- Huge range of correlation times (1 Hz to tens of GHz)
- Observable by many methods which should be always compared

Molecular motions are harder to manage than spin interactions:

They are the "weak spot" of MR Relaxometry *Theory* but they are the *principal goal* of MR Relaxometry *Practice*

Summing it up (kind of)

Interactions:

- DD Dipole-dipole interaction between nuclei
- DE Nucleus-electron dipole-dipole interaction
- CE Nucleus-electron contact interaction (the Fermi term)
- NQ Nuclear quadrupole interaction with local electric field gradients
- SR Spin rotation interaction
- CSA Chemical shift anisotropy (part of CS)
- CS Chemical shift (isotropic part) when not constant (exchange)
- JA J coupling anisotropy (part of J)
- J Scalar part of J coupling when not constant (exchange)
- etc. including interactions with SPIO's and other "exotica"

Motions:

- Rot Rotational diffusion (global, unconstrained)
- IRot Internal rotations (partial, tunnelling, kinks, you name it ...)
- Rept Reptations
- Libr Librations
- Vibr Vibtations with angular components (bending motions)
- Trans Translations (free or constrained)
- Crawl on surfaces, like Kimmich's caterpillars
- Hits Collisions (like against pore walls)
- Jump across barriers, between hydration shells, and the like
- Coll Collective motions (like in liquid crustals)
- etc. like Halle's flickering acquducts in proteins, ...

Combinatorics weighs in: the Grid of Formulas

Principal interactions versus principal types of motions

	Rot	IRot	Rept	Libr	Vibr	Trans	
DD	BPP	F _{1b}	F _{1c}	F _{1d}	F _{1e}	F_{1f}	
DE	F _{2a}	F_{2b}	F _{2c}	F _{2d}	F _{2e}	F_{2f}	
CE	F _{3a}	F _{3b}	F _{3c}	F _{3d}	F _{3e}	F_{3f}	
NQ	F_{4a}	F_{4b}	F_{4c}	F_{4d}	F_{4e}	$F_{4\mathrm{f}}$	
SR	F _{5a}	F _{5b}	F _{5c}	F _{5d}	F _{5e}	F_{5f}	
CSA	F _{6a}	F _{6b}	F _{6c}	F _{6d}	F _{6e}	F _{6f}	

Leading terms formulas: 100+

Combinatorics weighs in: the *SuperGrid of Formulas*

Relaxation is a second-order phenomenon!

Cross terms may be sometimes small ($\approx 1-15\%$) and sometimes forbidden, but they are many and enough of them are not really negligible:

formulas $\mathbf{F}_{m\alpha,n\beta}$

If we have N leading-term relaxation formulas, the total number of potentially useful ones is $\approx 0.5 * 0.5 * N(N+1)$

All formulas of potential interest: ≈ 1000

BPP formula ... just one case among hundreds

Combines dipole-dipole interaction with molecular reorientations

$$\begin{split} R_{1} &\equiv \frac{1}{T_{1}} = \frac{\hbar^{2}\gamma^{4}}{d^{6}} I(I+1) P_{1}(\tau,\omega), \\ R_{2} &\equiv \frac{1}{T_{2}} = \frac{\hbar^{2}\gamma^{4}}{d^{6}} I(I+1) P_{2}(\tau,\omega) \\ P_{1}(\tau,\omega) &= \frac{2}{5} J(\tau,\omega) + \frac{8}{5} J(\tau,2\omega), \\ P_{2}(\tau,\omega) &= \frac{12}{11} J(\tau,0) + \frac{2}{11} J(\tau,\omega) + \frac{8}{11} J(\tau,2\omega) \\ J(\tau,\omega) &= \frac{\tau}{1+(\omega\tau)^{2}} \end{split}$$

This is only one of the leading terms! **! But this one does have a pivotal position !** (Mother of all Relaxation Formulas)

BPP: one graphical rendering

$P(\tau,f)=J_\tau(\omega)+4\ J_\tau(2\omega),\ {\rm where}\ J_\tau(\omega)=2\tau/[1+(\omega\tau)^2]\ \ {\rm and}\ \omega=2\pi f$

for a pair of spin 1/2 nuclides of the same kind under isotropic rotational diffusion (dipolar interation)

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

BPP: another graphical rendering

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

Example of a model: log-normal distribution of τ values

Fig.1. Log-normal stretched dispersion functions $d_{1\sigma}(\omega, \tau)$ **and** $d_{2\sigma}(\omega, \tau)$ plotted against $\omega \tau m$ for various values of σ . The bold lines correspond to $\sigma = 0$ (clasical BPP shape). The other lines correspond to $\sigma = 1, 2, 3, 4$, and 5. A small offset (0.001) has been added in order to simulate the effect of background high-frequency motions.

A wide range of profiles ...

- .. (1) Parafilm M .. (2) 2.1M Dy(ClO₄)₃ in H₂O .. (3) 2mM MnCl₂ in H₂O .. (4) Egg yolk .. (5) 10 mM Gd³⁺ in D₂O
- .. (6) Egg albumen

Ferrante G., Sykora S., <u>Stelar srl</u>, **Technical Aspects of Fast Field Cycling** in Advances in Inorganic Chemistry, Editors van Eldik R., Bertini I., Elsevier 2005 (ISBN 0-120-23657-5), Vol.**57**. (<u>link to draft</u>)

The Seven Conjectures

- 1) $R_1 = R_2$ at $\omega = 0$ in all isotropic systems
- 2) $R_1 \le R_2$ at any ω
- 3) $dR_1/d\omega = dR_2/d\omega = 0$ at $\omega = 0$
- 4) $R_1 = R_2$ at an $\omega_0 > 0$, then $R_1 = R_2 = \text{constant for any } 0 \le \omega \le \omega_0$

In the absence of hetero-relaxation (quad glitches, paramagnetics, SPIO), at any ω :

- 5) $dR_1/d\omega \le 0$ and $dR_2/d\omega \le 0$
- 6) $-d \ln R_1/d \ln \omega \le 2$, $-d \ln R_2/d \ln \omega \le 1$
- 7) $R_2(0) / R_2(\omega) \le 11/6 \implies \ln R_2(0) \ln R_2(\omega) \le \ln(11/6) \cong 0.26$

Conjecture [1] $\mathbf{R}_1(\mathbf{0}) = \mathbf{R}_2(\mathbf{0})$ (R₁ and R₂ meet at origin)

This is not really a conjecture, because of the imperatives of symmetry ($\omega = 0 \Rightarrow$ no field \Rightarrow no externally imposed axial anisotropy)

Where we expect this to break down:

Wherever $\omega = 0$ does not imply $B_0 = 0$:

- Presence of local magnetic fields (ferromagnetic resonance)
- NQR (in solids, a local axis is defined by the electric field gradient)
- Zero-field splittings (EPR in solids)

In all such cases, the very definition of R₂ becomes problematic

Conjecture [1], a consideration using BPP formulas $\mathbf{R}_1(\mathbf{0}) = \mathbf{R}_2(\mathbf{0})$

??? Is it trivial when it comes to formulas ???

$$\begin{split} R_{1} &= \frac{1}{T_{1}} = \frac{\hbar^{2}\gamma^{4}}{d^{6}} I(I+1) P_{1}(\tau, \omega), & R_{2} &= \frac{1}{T_{2}} = \frac{\hbar^{2}\gamma^{4}}{d^{6}} I(I+1) P_{2}(\tau, \omega) \\ P_{1}(\tau, \omega) &= \frac{2}{5} J(\tau, \omega) + \frac{8}{5} J(\tau, 2\omega), & P_{2}(\tau, \omega) = \frac{12}{11} J(\tau, 0) + \frac{2}{11} J(\tau, \omega) + \frac{8}{11} J(\tau, 2\omega) \\ J(\tau, \omega) &= \frac{\tau}{1+(\omega\tau)^{2}}, \end{split}$$

Not quite:

$$2/5 + 8/5 = 12/11 + 2/11 + 8/11$$

In this case, it comes out from Clebsch-Gordon coefficients of the rotation group, but it turns out also for translations, and any other types of motions.

Conjecture [2] $\mathbf{R}_1(\omega) \leq \mathbf{R}_2(\omega)$ at any ω

This comes out of every theoretical model, and it is so well confirmed by experiments, that one suspects the existence of a very conceptual reason, something like:

"if it were not true, we could use spins to build a perpetuum mobile" or maybe "if it were not true, we could overcome Boltzmann distribution"

But so far neither I, nor anybody else, could figure it out ! That is why I feel compelled to classify it as a **conjecture**

Conjecture [2], a theoretical model example $R_1(\omega) \le R_2(\omega)$

Fig.1. Log-normal stretched dispersion functions $d_{1\sigma}(\omega, \tau)$ **and** $d_{2\sigma}(\omega, \tau)$ plotted against $\omega \tau m$ for various values of σ . The bold lines correspond to $\sigma = 0$ (clasical BPP shape). The other lines correspond to $\sigma = 1, 2, 3, 4$, and 5. A small offset (0.001) has been added in order to simulate the effect of background high-frequency motions.

Conjecture [3] At $\omega = 0$, $dR_1/d\omega = dR_2/d\omega = 0$ (curves are flat at origin)

This requires the correlation functions $C(\tau)$ to decay fast enough with respect to $\cos(\omega\tau)$ for small ω . But for $\omega \to 0$, $\cos(\omega\tau) \to 1 - \omega^2 \tau^2$ which means that this condition is mathematically quite weak.

Practically, it is sufficient that $C(\tau)$ be integrable over the interval $(0,\infty)$

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

Conjecture [4] If $\mathbf{R}_1(\omega_0) = \mathbf{R}_2(\omega_0)$ at some $\omega_0 > 0$, then $\mathbf{R}_1(\omega) = \mathbf{R}_2(\omega) = \text{constant for every } \omega \le \omega_0$

In other words:

The equality of R_1 and R_2 at some frequency ω_0 is possible if, and only if, the curves $R_1(\omega)$ and $R_2(\omega)$ are identical and completely flat (**dispersionless**) in the whole interval $(0, \omega_0)$.

This is a very strong statement which holds in all theoretical models. Experimental verification is good, but limited to low-viscosity diamagnetic liquids – the only systems where R_1 and R_2 can be equal even at quite high Larmor frequences.

Conjecture [5] $dR_1/d\omega \le 0, dR_2/d\omega \le 0$ (curves are non-increasing)

Valid only in absence of heteronuclear cross-relaxation (no quad glitches, paramagnetics, SPIO)

Conjecture [6] - $d \ln R_1/d \ln \omega \le 2$ (curves are never steeper than that)

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

Conjecture [6], a theoretical model example - $d \ln R_1/d \ln \omega \le 2$

Fig.1. Log-normal stretched dispersion functions $d_{1\sigma}(\omega, \tau)$ and $d_{2\sigma}(\omega, \tau)$ plotted against $\omega \tau m$ for various values of σ . The bold lines correspond to $\sigma = 0$ (clasical BPP shape). The other lines correspond to $\sigma = 1, 2, 3, 4$, and 5. A small offset (0.001) has been added in order to simulate the effect of background high-frequency motions.

Conjecture [6], practical examples $-d \ln R_1/d \ln \omega \le 2$

- .. (1) Parafilm M
- .. (2) 2.1M Dy(ClO₄)₃ in H_2O
- .. (3) 2mM MnCl₂ in H₂O
- .. (4) Egg yolk
- .. (5) 10 mM Gd³⁺ in D_2O
- .. (6) Egg albumen

Ferrante G., Sykora S., <u>Stelar srl</u>, **Technical Aspects of Fast Field Cycling** in Advances in Inorganic Chemistry, Editors van Eldik R., Bertini I., Elsevier 2005 (ISBN 0-120-23657-5), Vol.**57**. (<u>link to draft</u>)

Conjecture [6], more practical examples $-d \ln R_1/d \ln \omega \le 2$

Reference DOI: <u>10.3247/SL1Nmr03.001</u>

Presented at FFC Relax, Torino, Italia, 23-25 May 2013

Conjecture [7] $\ln R_2(0) - \ln R_2(\omega) \le \ln(11/6) \ge 0.26$

In other words: R_2 can't drop too much! One might even say that R_2 is not very 'interesting'

A cool, pragmatic usage:

- Measure R_1 , R_2 at some fixed frequency ω_0 ,
- Guess the likely value of $R_1 = R_2$ at $\omega = 0$
- ... and you get a fair idea of the R_1 dispersion profile between 0 and ω_0 .

Thank you all and see you again at FFC NMR Relaxometry Meeting in 2015

This document was uploaded with DOI <u>10.3247/SL4Nmr13.004</u>