How to investigate soft matter using Variable Field NMR Relaxometry

Stanislav Sykora, <u>www.ebyte.it</u>

My ties to the University of Bari:

(i) The last-in-the-World 80 MHz Tesla instrument I have serviced for a decade (now being decommissioned) \Rightarrow

 (ii) One of two research-grade greenhouses my late father-in-law build in the 70's
 ⇐ (still in use!).

Presented at the GIDRM Workshop on Investigating Soft Matter using NMR, Bari, Italy, 30 Sep 2013. DOI: 10.3247/SL4Nmr13.008

What is <u>Relaxometry</u>?

Many systems, left alone, evolve towards a steady state.

They often exhibit fast, periodic (orbital) evolution features and, superposed, much slower a-periodic (secular) evolution patterns. Alternatively, some systems exhibit only a monotonous a-periodic «settling» of some of their parameters.

All such slow, a-periodic components of a spontaneous evolution of a physical system can be referred to as relaxation phenomena.

Since relaxation leads to a steady state, to repeat a relaxation phenomenon, one must jolt the studied system out of its equilibrium.

In general, relaxometry is the art of studying relaxation phenomena.

How many types of relaxometry there are?

Simple answers: as many as ...

- the types of systems of interest (application-based classification)
- the interactions which cause them (phenomenological classification)
- the methods to follow them (metrological classification)

Examples

- Astronomical (hundreds of relaxation phenomena in solar system alone)
- Mechanical, electric, optical, ultrasound, ... relaxometric techniques pertinent to various molecular relaxation phenomena, among which
- NMR relaxometry, concerned with the evolution of molecular nuclear magnetization, generally in an unisotropic (axial) magnetic field.

General theory of Relaxation Phenomena (a glimpse)

Quantum version:

Terms:

- H ... Hamiltonian with its
- H_0 ... time-averaged part and
- S(t) ... its stochastic part.
- $C(\tau)$... Correlation function
- J(H₀) ... Spectral density

C's and J's are quadratic in the involved interactions!

Given a stochastic [spin] Hamiltonian

$$H = H_0 + S(t), =0,$$

under certain conditions (secular vs stochastic time scales) one obtains a secular equation for the density matrix

$$\frac{d}{dt}\boldsymbol{\sigma}(t) = -\frac{1}{2}\boldsymbol{J}(\boldsymbol{H}_0)\{\boldsymbol{\sigma}(t) - \boldsymbol{\sigma}_0\}$$

where

$$\boldsymbol{J}(\boldsymbol{H}_{\scriptscriptstyle 0}) = \int_{-\infty}^{\infty} d\tau \, \boldsymbol{C}(\tau) = \int_{-\infty}^{\infty} < \boldsymbol{S}^{\star}(0) \, \boldsymbol{S}^{\star}(\tau) > d\tau$$

and

$$S^{*}(0)=S(0)$$
 $S^{*}(\tau)=e^{iH_{0}\tau}S(\tau)e^{-iH_{0}\tau}$

with the italics denoting commutation super-operators

Note: In terms of the Lagrange-Hamiltonian approach, the classical version of relaxation theory is much the same. Classical and quantum approaches to relaxation are actually very similar.

So, what is, specifically, <u>NMR</u> Relaxometry?

Simple answer: just replace *Hamiltonian* with <u>Spin</u> Hamiltonian

$\mathbf{H} = \mathbf{H}_{\mathbf{Z}} + \mathbf{H}_{\mathbf{SR}} + \mathbf{H}_{\mathbf{C}} + \mathbf{H}_{\mathbf{DD}} + \mathbf{H}_{\mathbf{DE}} + \mathbf{H}_{\mathbf{F}} + \mathbf{H}_{\mathbf{J}} + \mathbf{H}_{\mathbf{Q}}$

Zeeman term
Spin-rotation term
Chemical shifts (screening) term
Direct dipole-dipole interactions term
Dtto between nuclei and free electrons
Hyperfine couplings term (with free electrons)
Indirect couplings term
Quadrupole interactions term

The intrinsic nature of relaxation mechanisms

In general, being quadratic in spin-interactions, every relaxation term combines *two spin-interaction terms* and *two molecular dynamics modes* which *activate* it.

The terms in which there is a coincidence between the two spin-interaction terms, as well as between the dynamics modes, are **the principle relaxation channels**.

Principle relaxation channels tend to dominate the relaxation phenomena, while the remaining **cross-relaxation pathways** are often quantitatively negligible.

Example:

In proton MRR of many diamagnetic systems the dominant relaxation channel uses direct dipole-dipole interaction, activated by molecular reorientation.

Molecular dynamics models: huge complexity

- Ever-growing, amazing number of [equally amazing] models
- Sub-molecular, molecular, oligo-molecular, and collective motions
- Huge range of correlation times (from 1 Hz to tens of GHz)
- Observable by many methods which should be compared

Molecular motions are harder to describe than spin interactions: They are the "weak link" of MR Relaxometry Theory but also the principal goal of MR Relaxometry Practice

Wrapping it up

Interactions:

- DD Dipole-dipole interaction between nuclei
- DE Nucleus-electron dipole-dipole interaction
- CE Nucleus-electron contact interaction (the Fermi term)
- NQ Nuclear quadrupole interaction with local electric field gradients
- SR Spin rotation interaction
- CSA Chemical shift anisotropy (part of CS)
- CS Chemical shift (isotropic part) when not constant (exchange)
- JA J coupling anisotropy (part of J)
- J Scalar part of J coupling when not constant (exchange)
- etc. including interactions with SPIO's and other "exotica"

Motions:

- Rot Rotational diffusion (global, unconstrained)
- IRot Internal rotations (partial, tunnelling, kinks, you name it ...)

X

- Rept Reptations
- Libr Librations
- Vibr Vibtations with angular components (bending motions)
- Trans Translations (free or constrained)
- Crawl on surfaces, like Kimmich's caterpillars
- Hits Collisions (like against pore walls)
- Jump across barriers, between hydration shells, and the like
- Coll Collective motions (like in liquid crustals)
- etc. like Halle's flickering acquducts in proteins, ...

The Grid of MRR Formulas

Interactions versus types of motions:

	Rot	IRot	Rept	Libr	Vibr	Trans	•••
DD	BPP	F _{1b}	F _{1c}	F _{1d}	F _{1e}	F _{1f}	
DE	F _{2a}	F_{2b}	F _{2c}	F _{2d}	F _{2e}	F_{2f}	•••
CE	F _{3a}	F _{3b}	F _{3c}	F _{3d}	F _{3e}	F_{3f}	
NQ	F_{4a}	F_{4b}	F _{4c}	F _{4d}	F _{4e}	F_{4f}	•••
SR	F _{5a}	F _{5b}	F _{5c}	F _{5d}	F _{5e}	F _{5f}	
CSA	F _{6a}	F _{6b}	F _{6c}	F _{6d}	F _{6e}	F _{6f}	
•••		•••	•••			•••	

In each cell there is a formula! Only the principle channels need over 100 of them. The total count would exceed 1000!

The BPP formula

Combines dipole-dipole interaction with molecular reorientations

$$R_1 \equiv \frac{1}{T_1} = \frac{\hbar^2 \gamma^4}{5d^6} I(I+1) P_1(\tau, \omega),$$

$$P_1(\tau, \omega) = J(\tau, \omega) + 4J(\tau, 2\omega),$$

$$J(\tau, \omega) = \frac{2\tau}{1 + (\omega\tau)^2}$$

$$R_2 \equiv \frac{1}{T_2} = \frac{\hbar^2 \gamma^4}{11d^6} I(I+1) P_2(\tau, \omega)$$
$$P_2(\tau, \omega) = 6J(\tau, 0) + J(\tau, \omega) + 4J(\tau, 2\omega)$$

This is only one of the most important relaxation channels!

But it does have a central position among all NMR relaxation formulas (it's the **mother of all relaxation formulas**)

Bloembergen N., Purcell E.M., Pound R.V., *Relaxation Effects in Nuclear Magnetic Resonance Absorption*, Phys.Rev. 73, 679-712 (1948). DOI: 10.1103/PhysRev.73.679 This could be considered as the first NMR review.

A very practical note

Always use relaxation rates, not relaxation times! Contributions to relaxation rates are **nicely additive** across different spin-interactions and different molecular motions. **The use of relaxation times is to be abhorred!**

The Mother of All Questions:

After all this complex and messy theory, do you <u>really</u> think that NMR Relaxometry can be ever good for something $?^{\infty}$

Answer: YES, ...

- 1) Because the theory nevertheles provides a general guidance
- 2) Because the BPP formula is fairly representative of all of them
- 3) Because qualitatively different cases also form uniform families
- 4) Because of the known excellent additivity of relaxation rates
- 5) Because even without theory, the relaxation rate curves still have an intrinsic value as metrological material characteristics.

The first four points actually enable the possibility of extensive educated-guess, semi-empirical "tinkering"

BPP: graphical representations

Another very practical note

Put any VF relaxation plots on a log(R) versus log(f) scale.For a number of theoretical as well as practical reasons, that is the only representation that really makes sense.

A few simulations based on BPP

The few slides that follow indicate an approach to simulating NMR R_1 relaxation-dispersion profiles (NMRD profiles).

Though based on BPP formula, this kind of semi-empirical approach is eminently suitable for quantitative investigations.

A simulated case of Variable Temperature MRR

A corresponding Variable Field MRR approach

A more complex case: VT MRR

The BPP factor P(τ ,f) as a function of temperature for two Arrhenius processes with $E_a = 6 \text{ kJ/mol}$, $\tau_0 = 10^{-9} \text{ sec}$ and $E_a' = 30 \text{ kJ/mol}$, $\tau_0' = 10^{-12} \text{ sec}$ and relative weights 0.2 and 0.8, respectively.

Fixed-frequency VT measurements cover just a small piece of a single curve

The same case in VF MRR format

The BPP factor P(τ ,f) as a function of temperature for two Arrhenius processes with E_a =6 kJ/mol, $\tau_0 = 10^{-9}$ sec and E_a' =30 kJ/mol, $\tau_0' = 10^{-12}$ sec and relative weights 0.2 and 0.8, respectively.

Variable-field measurements cover a full cut through the 2D $R_1(\tau, f)$ surface

Another kind of situation: VT MRR

Another kind of situation: VF MRR

A few NMRD profiles ...

(1) Parafilm M (2) 2.1M Dy $(ClO_4)_3$ in H₂O (3) 2mM MnCl₂ in H₂O (4) Egg yolk (5) 10 mM Gd³⁺ in D₂O (6) Egg albumen

Notice the enormous range of relaxation rates across a broad range of Larmor frequencies.

Ferrante G., Sykora S., Technical Aspects of Fast Field Cycling in Advances in Inorganic Chemistry, Editors van Eldik R., Bertini I., Elsevier 2005, Vol.57

NMRD profiles of some elastomers

Listed from top down at 0.01 MHz:

Circles:

Brown: Isobutylene-isoprene Red: Styrene-butadiene, anionic Green: Polychloroprene cis Blue: Ethylene-propylene rubber

Squares:

Brown: Styrene-butadiene Red: Styrene-butadiene, radical Green: Polyisoprene trans

Diamonds:

Brown: Polyisoprene 97% Red: Natural rubber

Triangles:

Brown: SBS rubber Red: Polybutadiene cis/trans Green: Polybutadiene 97% Blue: Polybutadiene 97.5%

NMRD profiles of some polystyrenes & polycarbonate

Circles (styrenes) from top down at 20 MHz:

Brown: Poly-α-methyl-styrene Red: Styrene-butadiene copolymer I Green: Styrene-butadiene copolymer II Blue: HIPS (I) antishock polystyrene Orange: Styrene homopolymer Gray: Styrene-acrylonitrile (SAN)

Diamonds: Black: Polycarbonate

NMRD profiles of some nylons

Blue triangles: Nylon 6 Red squares: Nylon 6-6 Corean Brown disks: Nylon 6-6 Rhone-Poulenc Green diamonds: Nylon ICI

Presented at the GIDRM Workshop on Investigating Soft Matter using NMR, Bari, Italy, 30 Sep 2013

NMRD profile of solid BSA

NMRD profile of a 30% cross-linked BSA solution

Water in pietra Serena: UPEN T₁ distribution curves at different field strengths

What we did not talk about: the instruments ...

These are old, historic hardware slides (1997). for more recent stuff, visit Stelar Srl

- FFC

The sequences ... **PP: basic Pre-Polarized sequence**

NP: basic Non-Polarized sequence

The way the actual data look ...

Arrayed parameter: tau (decreasing)

... and many, many other things!

But my allocated time is finite and therefore

Thank You for your Attention

All slides will appear online under DOI <u>10.3247/SL4Nmr13.008</u>