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Controversies about the nature of NMR signal
and its most common modes of detection

There is  a growing body of literature  showing that the foundations 

of Magnetic Resonance are not as well understood as they should be
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Controversies about the nature of NMR signal
and its most common modes of detection
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Questions, questions, questions …
for which there should exist simple answers, but … do they?

1) Why do we use different explanations for different aspects of MR ?

2) Which aspects of MR are undeniably quantum and cannot be described classically ?

3) Are Bloch equations classical? Is it sensible to try derive them from quantum theory ?

4) Is electromagnetic radiation involved in magnetic resonance? If so, is it true or virtual ?

5) Does spontaneous emission from spin systems occur? If so, what are its properties ?

6) Is MR a near or a far phenomenon? Is remote excitation and/or detection possible ?

7) Can an FID be described as coherent spontaneous emission? What about CW-NMR ?

8) How do the spins interact with nearby conductors, and with the coil ?

9) Which phenomena can be described considering an isolated spin, and which can’t ?

a) What is the role of relaxation processes in all this? Are they essential or marginal ?

b) What is the role of time-averaged Hamiltonians in magnetic resonance ?

c) Can an FID be described as a sum of individual quantum transitions ?

d) Does all this uncover some gaping holes in quantum physics ? 

e) Does all this tell us something about the ontology of photons ?

f) Can MR throw new light on basic aspects of physics ?

(we have no time for these points now, but I have a handout and we can discuss them during the meeting)
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We use different descriptions for different MR phenomena !

CLASSICAL

Induction law,

Bloch equations,

Reciprocity theorem,

Simplified MRI,

QUANTUM

Coupled spins spectroscopy,

Spin systems dynamics,

Hilbert/Liouville QM,

Density matrix,…

HYBRID

Thermal equilibrium

Theory of CW-MR

Quantum coherences

Operator products
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The principle difficulty:

How to reconcile the manifestly quantum aspects of MR phenomena 

with the totally classical nature of the detection/excitation devices
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Possible ways to tackle the problem

A. Rely on paradigms shared by both classical and quantum physics

Thermodynamics, Conservation Laws and (some) Statistical Physics

A problem: the approach provides good insights but remains incomplete

B. Approximate quantum spin systems in a classical way

A problem: arisal of a transversal magnetization from parallel spin eigenstates

C. Provide a quantum description of the detection/excitation devices

A problem: apparent complexity and necessity to conform to classical results

An extra task: how to couple the spin system to the detection/excitation device



The two parts of this talk:
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A. Part I: Classical paradigms shared also by quantum physics

Thermodynamics, Conservation Laws and (some) Statistical Physics

B. Approximate quantum spin systems in a classical way

A problem: everybody does this since 50 years, therefore I don’t dig it

C. Part II: Quantum description of the detection/excitation devices

An extra task: coupling the spin system to the detection/excitation device



Let us forget quantum physics for a while ☺☺☺☺

and remember just the conservation of energy

(the first law of thermodynamics)
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The physical system we will consider:

B = µH = µβJττττβ , where

µ is the permaebility, β a constant, and ττττβ a unit vector.

β and ττττβ depend only on the system’s geometry.

m = mττττm , where ττττm
is a unit vector  along m

L Loop and its Inductance

R Resistance (may be distributed)

J Electric current

P just a Point

B Magnetic Field

m Magnetic Dipole



Setting up a master equation
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Since R is the only dissipative element in the circuit,

the energy conservation law dictates

dE/dt = dEL/dt + dEi/dt + dEm/dt = -J2R

Hence, using the apostrophe to denote time derivatives,

(LJ -γm)J' - κm'J + RJ2 +kmm' = 0

Energy terms:

Inductive: EL = LJ2/2

Self-energy of m: Em = km2/2

Interaction: Ei = - m.B = -κmJ,

where κ = µβ(ττττβ.ττττm)
Dissipation: dE/dt = -J2R



… a couple of useful notes …

Energy terms:

Inductive: EL = LJ2/2

Self-energy of m: Em = km2/2

Interaction: Ei = -m.B = -γmJ,

where κ = µβ(ττττβ.ττττm)
Dissipation: dE/dt = -J2R
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† Since EL = LJ2/2 and also EL = ∫∫∫∫V|B|2dτ/2µ = µJ2 ∫∫∫∫V β2dτ/2, 

we have L = µ ∫∫∫∫V β2 dτ = µ<β2>V

showing that,  upon scaling, β correlates with L1/2

The old terms coil volume and filling factor arise from here

† While β is positive by definition, κ = µβ (ττττβ.ττττm)

can be both positive or negative



(A,B) Special cases of the master equation
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A. When there is no magnetic dipole (m = m' = 0), we get

LJJ' + RJ2 = 0 ⇒ LJ' + RJ = 0 ⇒ J = J0 e
- (R/L) t

This is the well-known equation of the LR-circuit.

B. The term kmm' is the power needed to maintain the dipole.

This is null in the case of quantum particles. It drops out

also when the dipole is associated with a permanent magnet

or when it is driven driven by an external device. 

In such cases k=0 and we have a modified master equation:

(LJ -γm)J' - κm'J + RJ2 +kmm' = 0

LJJ' - κmJ' - κm'J + J2R = 0



(C) Special cases of the modified master equation
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LJJ' - κmJ' - κm'J + J2R = 0

How must the dipole evolve to maintain a constant current?

J’ =0

The answer is that m must grow linearly with time at the rate

m' = JR/κ

One can reverse the point of view and say that this is as though

the linearly increasing dipole generated in the circuit the emf

Vemf = JR = κm' = µβ(ττττβ.ττττm) m'

which coincides exactly with the classical law of induction.

It is easy to show that this holds also when J’≠ 0, provided

the induction law is properly extended (LJ = κm = - Φ).



(D-E) Oscillating magnetic dipoles
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D. What if the dipole is made to oscillate?

Let m = m0 exp(iωt) and assume a solution of the type J = J0 exp[i(ωt+ϕ)].

Then the master equation gives J0 = 2κωm0/|R+iωL| and  tan(ϕ) = R/ωL.

E. The amplitude of the detected current (signal)

is proportional to κ and therefore also to β. Since β describes the efficiency

B/J of a current J to generate the field B at point P, this proves the

reciprocity theorem:

LJJ' - κmJ' - κm'J + J2R = 0

The larger is the field B generated at a point P by a current J in the loop,

the stronger is the detected signal due to an oscillating dipole located at P.

Hoult D.I., The principle of reciprocity in signal strength calculations - a mathematical guide,

Concepts in Magn. Reson. <b>12</b>, 173-187 (2000).



(F) Current detection of oscillating dipoles
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Comment:

While the maximum current is obtained for infinite-Q loops (R=0),

the best S/N ratio is attained for the “matching” condition R = ωL

J0 = 2κωm0/|R+iωL| Detected signal current

J0,max = 2κm0/L is attained for R=0

NJ = [4kTBw/R]½ Johnson noise current

(S/N)J = J0/NJ = ωκm0 (kTBw)-½ R½ / |R+iωL|

(S/N)J,max = m0 ω
½ (2kTBw)-½ κL-½ is attained at R=ωL



(G) Voltage detection of oscillating dipoles
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Comment:

While the  maximum voltage is obtained for open loops (R = ∞),

the best S/N ratio is attained for the “matching” condition R = ωL.

V0 = J0R = 2ωκm0 R/|R+iωL| Detected signal voltage

V0,max = 2ωκm0 is attained for R=∞

NV = [4kTBwR]½ Johnson noise voltage

(S/N)V = V0 /NV = ωκm0 (kTBw)-½ R½ / |R+iωL|

(S/N)V,max = m0 ω
½ (2kTBw)-½ κL-½ is again attained at R=ωL



(H) Power detection of oscillating dipoles
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Comment:

For signal power, the “matching” condition R = ωL gives both 

maximum signal and best S/N ratio.

Peff = ½ J0
2R = 2ω2κ2m0

2 R/[R2+(ωL)2] Detected power

Peff,max = ωκ2m0
2/L is attained for R=ωL

NP = 4kTBw Johnson noise power

(S/N)P = P0 /N0 = ω2κ2m0
2 (kTBw)-1 R/[R2+(ωL)2]½

(S/N)P,max = m0
2 ω (2kTBw)-1 κ2L-1 attained at R=ωL



(I) Comparing various detection modes
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� S/N is independent of the detection mode, provided the 

matching condition R=ωL is satisfied.

� Since κ correlates with L½, (S/N)max is little dependent on L
(though there may be some dependence on coil geometry).

� (S/N)max is proportional to ω½ and to (Tloop)
-½.

� In MR, under thermal polarization, m0 is proportional to the 

Larmor frequency (≈ ω) which makes (S/N)MR proportional       

to ω3/2. Geometric optimization factors can bring it to ω7/4.

(S/N)J = (S/N)V = √(S/N)P = ωκm0 (kTBw)-½ R½ / |R+iωL| = S/N

(S/N)max = m0 ω
½ (2kTBw)-½ κL-½ is always attained at R=ωL



Summing up what we did in Part I
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Defined all energy terms

⇓⇓⇓⇓
Applied thermodynamic laws such as

energy conservation and thermal noise formulae

⇓⇓⇓⇓
and we have promptly obtained:

� Circuit equations

� Induction laws

� Reciprocity theorem

� Best signal detection conditions

� Expressions for S/N ratios

� Useful S/N rules

� … etc

Note: making the circuit more complicated (LC) is useful and may uncover some 

interesting  engineering features,  but nothing  qualitatively new for the physicist



Part II – Quantization of the LC Circuit
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Expressions for energy & thermodynamic principles are shared

by classical and quantum physics.

Therefore,

casting Part I into quantum terms might work.

Note: this slide and the next one were parts of a single-slide animation!



Part II – Quantization of the LC Circuit
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Expressions for energy & thermodynamic principles are shared

by classical and quantum physics.

Therefore,

casting Part I into quantum terms might work.

After all, it did on other occasions, such as that of harmonic oscillator:



Classical Physics
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�� A reminder of ye ol’ school times when we were all young   ��

The recipe (in Lagrange formalism)

1) Define a set of generalized coordinates q

2) Define corresponding generalized velocities v = dq/dt

3) Define a “kinetic energy” K = K(v)

4) Define a “potential energy” U = U(q)

5) Form the Lagrangian L (q,v) = K – U

6) Define generalized momenta p = ∂L/ ∂v

7) Then the differential equations of motion are ∂L/ ∂q = dp/dt

That’s all, folks, life was real simple back then!



Quantization of Classical Physics
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This is where things started to get slightly weird

The recipe (in Schrödinger – de Broglie formalism)

Well, it’s not that bad, after all, don’t you think?

Classical:

• q

• v = dq/dt

• K = K(v)

• U = U(q)

• L (q,v) = K – U

• p = ∂L/ ∂v

• dp/dt = ∂L/ ∂q

Formal quantum transcription:

• Form the classical Hamiltonian H (q,v) = K + U

• Express it as a function of q,p H = H (q,p)

• Replace q’s with the operators Q ≡ q

• Replace p’s with the operators P ≡ -iħ ∂/∂q

• Define a state function ψ(q,t) 

• Evolution equation is     iħ d ψ(q,t)/dt = H ψ(q,t)

• … and now we are in the Hilbert-space QM track ☺



Limitation to non-dispersive systems
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The classical Lagrange (or Hamilton) formalism of classical physics and the 

corresponding formalism of quantum physics are conservative: they do not 

cover dispersive elements and phenomena.

In the case of electric circuits, this limits their applicability to nets composed 

only of non-dispersive elements such as inductors (L) and capacitors (C), 

the simplest of which is an LC loop.

A more general treatment including dispersive elements such as resistors (R) 

requires an extension of the formalisms to non-conservative phenomena.



Energy terms for an LC circuit
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Magnetic energy: EL = Lj2/2

Electric energy: EC = Cv2/2

Faraday’s induction law: v = L(dj/dt)

Hence EC = CL2 (dj/dt)2 /2

Idea:

Consider the current j as a generalized variable!

Then, by analogy,  we identify EL with a ‘potential’

energy and EC with a ‘kinetic’ energy and therefore 

identify the Lagrangian of an LC circuit with

L = CL2 (dj/dt)2 /2 - Lj2/2



Does it work in classical dressing?
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Lagrange’s recipe:

• q

• v = dq/dt

• K = K(v)

• U = U(q)

• L (q,v) = K – U

• p = ∂L/ ∂v

• Evolution:

dp/dt = ∂L/ ∂q

LC circuit correspondences (nDim=1):

• j generalized variable

• u = dj/dt generalized velocity

• K = CL2 u2/2 ‘kinetic’ energy

• U = Lj2/2 ‘potential’ energy

• L = CL2 u2/2 - Lj2/2 Lagrangian

• y = CL2 u  ⇒ L = (1/CL2) y2/2 - Lj2/2

• Evolution equation:

dy/dt = -Lj  ⇒ (LC) d2j/dt2 + j = 0

The ‘equation of motion’ (LC) d2j/dt2 + j = 0   is satisfied by

any harmonic function j(t) having the frequency ω = 1/√(LC)

Exactly as expected! It works ☺☺☺☺



LC circuit in quantum dressing
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Classical LC circuit:

� j

• u = dj/dt

• K = CL2 u2/2

• U = Lj2/2

• L = CL2 u2/2 - Lj2/2

� y = CL2 u

• L = (1/CL2) y2/2 - Lj2/2

� H (j,y) = (1/CL2) y2/2 + Lj2/2

Quantum LC circuit:

� j

• y = -iħ ∂/∂j

� Hamiltonian:

H  = -[(ħω)2/2L] ∂2/∂j2 + (L/2) j2

where ω = 1/√(LC)

� Wavefunction: ψ(j,t)

� Evolution (Schrödinger) equation:

iħ dψ(j,t)/dt = H ψ(j,t)

Expected stationary solutions:

ψ(j,t) = exp[±i(E/ħ)t+iϕ] ψ(j)   where   ψ(j) = E H ψ(j)



Quantum LC Circuit and the Harmonic Oscillator
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Quantum LC with frequency ω:

• j

• Hamiltonian:

H = -[(ħω)2/2L] ∂2/∂j2 + (L/2) j2

• Wavefunction: ψ(j,t)

• Schrödinger equation:

iħ dψ(j,t)/dt = H ψ(j,t)

Quantum HO with frequency ω:

• x

• Hamiltonian:

H = -[ħ2/2m] ∂2/∂x2 + (mω2/2) x2

• Wavefunction: ψ(x,t)

• Schrödinger equation:

iħ dψ(x,t)/dt = H ψ(x,t)

A perfect correspondence can be achieved by setting 

m ≈ CL2 = L/ω2

saving a lot of work in finding the stationary solutions



Stationary solutions for the quantum LC
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This might lead us to  new quantum features/phenomena 

in molecular-size circuits as well as a better understanding 

of quantum noise in conventional electronic circuits

? Reflect !?



Hamiltonian of a Spin System with Coil (SSC)
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My not-so-secret goal is to make the coil current

an integral part of the Spin System Hamiltonian

HSSC = HS + HLC + HSC

HS Spin system Hamiltonian associated with spin degrees of freedom.

Once it used to be a controversial concept for a few years but it reaped

such a success that today we rarely perceive it as an approximation.

Well known (Zeeman, dipole-dipole, chemical shifts, scalar couplings,

spin-rotation, etc …) 

HLC Hamiltonian of the receiver LC circuit (the Coil). 

This is a new term, just derived in the previous part of this talk.

HSC Spin-coil interaction term without which we could see no signal.

It is still to be defined!



Interaction of a Spin with a Coil
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Classical:

Ei = - m.B = - µβj(ττττβ.m), where β and ττττβ depend on system geometry

Quantum:

HSC = - µβγ j(ττττβ.S) = νγ(ττττβ.S) j, where ν = - µβ

Special case:

When the coil is aligned along the X-axis and the point P is at its center, then

HSC = νγ jSx = νγ j(S++S-)/2

= µH = µβjττττβ



Full Hamiltonian of a Spin System and a Coil
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H = HS + HLC + HSC Total Hamiltonian

HS = HL + HC + HSS Spin Hamiltonian

HL = - B0 .Σk γk Sk Larmor interaction

HC = Σk γk (B0 .Ck .Sk) Chemical shift interactions

HSS = Σk,k’ γkγk’ (Sk .Tk,k’ .Sk’) Spin-spin interactions

HLC = -[(ħω)2/2L] ∂2/∂ j2 + (L/2) j2 LC coil Hamiltonian

HSC = ν (ττττβ .Σk γk Sk) j Spin-coil interactions



A single spin and a coil in lab coordinates
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H = HL + HC + HSC Total Hamiltonian

HL = - γBSz Larmor interaction

HC = -[(ħω)2/2L] ∂2/∂ j2 + (L/2) j2 Coil Hamiltonian

HSC = νγSx j = νγ [(S++S-)/2] j Spin-coil interaction

Z-axis along B0, X-axis along the coil

B is the effective, chemically screened B0



Heisenberg-form matrix elements
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Spin-space base functions |σ〉, for S = ½ , σ = +½, , -½

Coil current base functions |ψn(j)〉

Full-system base functions |Ψn(σ, j)〉 = |σ〉 |ψn(j)〉

Spin-Hamiltonian elements HL |Ψn(σ, j)〉 = σΩ |Ψn(σ, j)〉, Ω = γB (Larmor)

Coil-Hamiltonian elements HC |Ψn(σ, j)〉 = (n+½) ω |Ψn(σ, j)〉

Spin-coil interaction elements HSC|Ψn(σ, j)〉 = νγ Sx j |Ψn(σ, j)〉 = ???

of a single spin + coil Hamiltonian; convention ħ ≡ 1



Off-diagonal spin-coil interaction elements
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Reminder:   HSC |Ψn(σ, j)〉 = νγ Sx j |Ψn(σ, j)〉 = ???

of a single spin + coil Hamiltonian

Some mathematical tools:
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Full  spin-coil Hamiltonian matrix
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of a single spin S= ½ and a coupled LC circuit; convention ħ ≡ 1

Diagonal elements:

Hn,- = (n + ½) ω- Ω/2

Hn,+ = (n + ½) ω+ Ω/2

For green elements:

∆diag = ω- Ω
Strong coupling for

ω = Ω
Resonance!

For gray elements:

∆diag = ω + Ω
Weak coupling

Bloch-Siebert shifts

',,,,,' σ−σ++ δ
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A detail of  the spin-coil Hamiltonian
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of a single spin S= ½ and a coupled LC circuit; convention ħ ≡ 1

Diagonal elements grow with n

Off-diagonal elements grow with √n



Spin-coil Hamiltonian detail (2)
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The gray off-diagonal elements may be neglected (?)

The green elements pair the eigenstates into 2x2 matrices

which are easy to diagonalize explicitely

Work on spin_system – coil interaction is going on



What’s going on during an FID when there is no coil?
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Hypothesis B

Good coil

Hypothesis B: coil responsible for M⊥ (HSC )

Poor coil

Hypothesis A: coil does not affect the sample

Poor coil

Hypothesis A

Good coil

Hypothesis A: coil is just a detector (dependence on β: linear?)

Hypothesis B: coil is part of the M⊥ generation (dependence on β: quadratic?)

Hypothesis C: no coil, no perpendicular magnetization !???

Sure! no coil, no signal? ☺ ?  Theory works! But is it correct? � ?



Limb lost, Wisdom gained
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Thank you – and let’s discuss!

Erwin, a would be friend,

closed me in his Box; yet,

despite all odds, out I got

- and all on my own -

loosing just a limb in the

nasty quantum foam!

Most amazing things I saw,

states mixed and uncertain

Erwin could never imagine!

For the Box was Closed!

Inaccessible to his scrutiny

while I, I stayed Within.


