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Abstract

Binary iterated powers (bips) are defined as functions of the type

f(x)  = β^(e0β^(e1β^(e2β^(...β^(enx)...)))) ≡ {b0b1b2...bn|x}, where β is a non-negative base,

ek = 2bk-1, and b = { b0,b1,b2,... ,bn} is a binary sequence of 0's and 1's.

This paper explores the properties of both finite and infinite binary iterated powers in the real and complex domains. In

particular, it analyses the convergence behavior of infinite bips and shows that, for a range of bases and any infinite binary

sequence b, they converge to a real value which depends upon b but not upon the starting value of x. This establishes an

interesting bijection between a subset of infinite bips and the set of non-negative real numbers.

Among potential applications of bips is a qualitatively novel real numbers representation which is also briefly discussed.

MSC-2000 keys: 08A70, 26A12, 26A18, 26A99, 26D07, 33E99, 33F99, 40A30, 58K05, 58K20, 68M07

I. Introduction

Given a positive real number β and a real number x, one can form expressions such as

(I.1) β^+β^-β^+β^+β^-x ≡ β^(+β^(-β^(+β^(+β^(-x))))

where ^ stands for the binary power operator (β^x ≡ βx
) and, as indicated, the order of evaluation is from right to

left. Expressions of this kind shall be called binary iterated-powers (or bips) in base β. The distribution of the "+"

and "-" signs within a bip can be encoded by means of binary sequences having "0" and "1" as their elements. If

we let "1" correspond to the "+" sign and "0" to the "-" sign, the above example can be associated with the binary

sequence b ≡ {10110} and the value of the expression, intended as a function of x, can be written as {10110|x}.

In this paper we investigate the behavior of bips and show that when e
-1

 < abs(ln(β)) ≤ e and the length of the

binary sequence extends to infinity, then every infinite bip converges to a value which is independent of x. This,

among other things, leads to a mapping of the set B of infinite binary sequences into the set R of non-negative real

numbers, extended by the addition of infinity element. We also show that for a subset B*⊂B, this mapping is a

bijection and thus gives rise to a representation of real numbers by infinite bips, encoded by the corresponding

binary sequences.

There is a relationship between bips and the functions known as iterated exponentials or hyperpowers [1], [2],

which can be viewed as very special cases of bips. It turns out, however, that the above-mentioned bijection holds

only for β values for which the hyperpowers do not converge to a finite limit. In order to underline this diversity

and avoid misunderstandings, we will use preferentially the short term bip rather than the expanded form binary

iterated power.

II. Definitions and notation

Let R be the set of all non-negative real numbers with the addition of infinity (∞) as a special element. Since R

is totally ordered (∞ is defined to be greater than all other elements of R ), one can easily extend to it the concept

of intervals. The following intervals of R shall be used quite often:
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[0,∞] ≡ U0∞ , [0,1] ≡ U01 and [1,∞] ≡ U1∞.

We will use two mappings, E
+
:R→R and E

-
:R →R, defined as

(II.1) E±±(x) ≡ β^(±x) ≡ exp(±αx) for any x∈[0,∞) and, as an extension, E+(∞) = ∞, E-(∞) = 0.

Here α = ln(β) and β, called the base, is a positive real number. The symbol '±' stands for either '+' or '-' and we

follow the usual convention that, within a statement, one must choose systematically either the upper symbol or

the lower symbol.

Since E±± will be often used iteratively, it is convenient to define E±±
n
:R→R by setting

(II.2) E±±
0
(x) ≡ x  and  E±±

n+1
(x) ≡ E±±(E±±

n
(x)) for any n=0,1,2,...

The convention followed throughout this paper is that mappings are set in bold face and their products and

powers are defined by nesting, while functions are set in normal type and subject to normal arithmetic. For

example, when Mk:R→R are mappings corresponding to some functions mk(x), then M1M2(x) ≡ M1(M2(x)) and

M1
2
(x) ≡ M1(M1(x)), while m1

2
(x) ≡ m1(x).m1(x) = (m1(x))

2
. Unlike functions, mappings will be routinely applied

also to the power sets of their domains.

Closely associated with E±± are their inverse mappings L±±:R→R. In this particular case, L+ and L- can be

lumped together by means of a common function L:R→R, defined as

(II.3) L±±(x) ≡ L(x) = abs(lnβ(x)) = abs(ln(x)/α) for any x∈(0,∞)  and  L(0) = ∞, L(∞) = ∞.

The powers of L are

(II.4) L
0
(x) ≡ x  and  L

n+1
(x) ≡ L(L

n
(x)) for any n=0,1,2,...

The next lemma lists some of the properties of the base mappings E±±. Though the statements are elementary

enough to justify skipping their proofs, we list them anyway since they enumerate the requisites for eventual

extensions of the theory to other base mappings.

Lemma 1. The base mappings E+:R→R, E-:R →R and L:R→ R have the following properties:

(a) E±± are continuous and have a derivative everywhere in the interval (0,∞).

(b) E+ is increasing and E- is decreasing everywhere in R.

(c) E±± map any (closed/open) interval U of R onto a (closed/open) interval E±±(U).

(d) The mappings E±±:U→E±±(U) are bijections whose inverse is in both cases the mapping L.

(e) When {Uk}, k = 0,1,2,... is a countable set of intervals of R then

∩kE±±(Uk) = E±±(∩kUk)  and  ∪kE±±(Uk) = E±±(∪kUk).

(f) When U' ⊂ U, then E±±(U') ⊂ E±±(U).

(g) E-(x) ≤ 1 ≤ E+(x) for any x∈R, with the equalities occurring only for x=0.

(h) When x∈(0,∞), then E±±(x)∈(0,∞).

(i) E+(U0∞) = U1∞ , E-(U0∞) = U01  and E+(U0∞)∪E-(U0∞) = U0∞ .

We shall call L-progeny of x the infinite sequence of iterated images (descendants) of x under L:

(II.5) P(x) ≡ {x0,x1,x2,...}, where x0 ≡ x and xk = L(xk-1) = L
k
(x) for any k>0.

Denoting as B the set of all infinite binary sequences with elements "0" and "1", we define a mapping B:R→B

as follows: given an x∈R, consider its L-progeny P(x) ≡ {x0,x1,x2,...} and associate with x the binary sequence

(II.6) B(x) ≡ {b0b1b2...} in which bk = "1" when xk ≥ 1 and bk = "0" when xk < 1.
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For example, in the neperian base β = e, B(2) = {1001 0110 0000 1011 0100 1010 1011 0000...} ≡
{960b4ab0...}, B(π) = {d2c52092...} and B(10

100
) = {f0445111...} (the standard hexadecimal transliteration of

binary quadruplets is used to keep the notation compact).

Denoting as B the set of all infinite binary sequences of elements "0" and "1" and as Bn the set of finite binary

sequences of length n, let us define starter mappings Sn:B→Bn and trailer mappings Tn:B→B, such that

   a) the first n elements of b coincide with the elements of Sn(b), and

   b) the k-th element of Tn(b) is the (k+n)-th element of b.

Explicitly, when b ≡ {b0b1b2...}, then

(II.7a) Sn(b) = {b0b1b2...bn-1},

(II.7b) Tn(b) = {bnbn+1bn+2...},

(II.7c) b = {Sn(b)Tn(b)}.

The last expression is an example of the concatenation of binary sequences which is an intuitive operation of

the type b⊕c ≡ {bc}. Notice, however, that the first argument of {bc} must be a finite binary sequence while the

second one may be either finite or infinite.

Given a binary sequence b, finite or infinite, we shall call complementary to b the sequence b' = Cpl(b) in

which all elements are inverted with respect to the corresponding ones in b (in other words, when bk = "0" then b'k
= "1" and vice versa). When only the first element of b' is inverted and all the others are identical, the sequence b'

shall be called the inverse of b and denoted as Inv(b).

The following integer-valued functions are useful for finite binary sequences:

- len(b), the length of b, equal to the total number of elements in sequence b.

- zer(b), the zeroes count function, equal to the number of "0" elements in the sequence b.

We define also the signature function sgn(b) such that sgn(b) = +1 when the first element of b is "1" and

sgn(b) = -1 when it is "0" (in this case it makes no difference whether b is finite or infinite).

It is often necessary to handle binary sequences with long segments composed only of "0"s or "1"s. In such

cases, we will use an upper index to encode the length of such segments writing, for example, {101
6
0

5
} instead of

{1011111100000}. The advantage of such a notation is best evidenced by sequences with variable-length

segments, such as {01
n
}.

In infinite sequences one might also encounter periodically repeated segments. We shall use the underline to

indicate such periods. Thus, for example, {01} ≡ {010101...}, {01} ≡ {0111...}, etc.

As anticipated in the Introduction, given a positive base β and a finite binary sequence b ≡ {b0b1b2...bn-1}, we

associate with it the following binary iterated power, or bip, which is a function of the real argument x:

(II.8) {b|x}α = β^σ0β^σ1β^σ2... β^σn-1x = exp(ασ0 exp(ασ1 exp(ασ2 ... exp(ασn-1x)))),

where σk = +1 when bk ="1" and σk = -1 when bk ="1". The parameter α = ln(β) can assume any real value and

shall be used much more often than the base β. When there is no danger of confusion, the explicit indication of

the dependence of {b|x}α on α shall be dropped in favor of the simpler notation {b|x}. Some bips formulae get

simplified by admitting also a void binary sequence of length 0 and setting {|x} ≡ x.

The special bip {1
n
|x}α, evaluated for x = 1, is the finite hyperpower function [1] of the argument α or, more

conventionally, of β = e
α
:

(II.9) Θn(β) = β^β^...^β ≡ E+
n
(1) ≡ {1

n
|1}α .
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For n→∞, Θn(β) converges to a finite value when α ∈ [-e,e
-1

], diverges (i.e., converges to ∞) when α > e
-1

 and

oscillates when α < -e (for proofs, see either [1] or the proof of Theorem I of this paper).

For any finite binary sequence b, {b|x} is a continuous mapping of the real numbers set R into R which has

finite derivatives of any order with respect to both x and α. The derivatives of {b|x} with respect to x will play an

important role. For brevity, they shall be written either as {b|x}' or {b|'x}. There is a difference between the two

notations which emerges when x is replaced by a function f(x) on R:

a) {b|f(x)}' is the derivative of the composite function, while

b) {b|'f(x)} is the derivative of the function {b|y} with respect to y, evaluated at the point y=f(x).

Given an infinite binary sequence b∈B and a natural n, consider the following mapping Mn,b:R→R

(II.10) Mn,b(x) = {Sn(b)|x} = E0(E1(E2(...En-1(x))...))),

where Ek ≡ E+ when bk = "1" and Ek ≡ E- when bk = "0". Since Mn,b depends only on the first n elements of b, its

definition extends trivially to all binary sequences whose length is at least n. The following lemma summarizes

some of its properties:

Lemma 2. For any natural n and any b∈B

(a) Mn,b(x) is continuous and has a derivative everywhere in the interval (0,∞).

(b) Mn,b(x) maps any (closed/open) interval U of R onto a (closed/open) interval Mn,b(U).

(c) The mapping Mn,b:U→Mn,b(U) is a bijection whose inverse is L
n
.

(d) When {Uk}, k = 0,1,2,... is a countable set of intervals of R then

∩kMn,b(Uk) = Mn,b(∩kUk)  and  ∪kMn,b(Uk) = Mn,b(∪kUk).

(e) When U' is a proper subinterval of U then Mn,b(U') is a proper subinterval of Mn,b(U).

(f) Mn,b(x) is increasing when zer(Sn(b)) is even, and decreasing when zer(Sn(b)) is odd.

(g) When x∈(0,∞), the first n elements of the binary sequence b' = B(Mn,b(x)) coincide with those of b.

Proof.

Statement (a) to (e): M1,b coincides with E+ or E- (depending upon whether b0 = "1" or "0", respectively). For n

= 1, statements (a),(b),(c),(d),(e) coincide with the statements (a),(c),(d),(e),(f), of Lemma 1, respectively. It

remains to prove that their validity for Mn,b implies that they hold also for Mn+1,b. From (II.10) it follows that

Mn+1,b(x) ≡ Mn,b(En(x)). Since each En is either E+ or with E-, however, the validity of statements (a),(b),(c),(d),(e)

for Mn+1,b(x) follows directly from the assumption and, again, from Lemma 1.

Statement (f): For n=1, this statement coincides with that of Lemma 1b. Assume now that it holds for Mn,b(x).

We distinguish two mutually exclusive cases. Case i) When bn = "1", Mn+1,b(x) ≡ Mn,b(E+(x)). Since E+(x) is an

increasing function of x, Mn,b(E+(x)) is either increasing or decreasing, depending upon the behavior of Mn,b(x)

which, by assumption, depends upon the parity of zer(Sn(b)). Considering that, in this case, zer(Sn+1(b)) =

zer(Sn(b)), if follows that Statement (f) holds also for Mn+1,b(x). Case ii) When bn = "0", Mn+1,b(x) ≡ Mn,b(E-(x))

and, since E-(x) is a decreasing function of x, the behavior of Mn+1,b(x) is opposite to that of Mn,b(x). In this case,

however, zer(Sn+1(b)) = zer(Sn(b))+1 so that the parity of zer(Sn+1(b)) is opposite to that of zer(Sn(b)) and

Statement (f) again holds also for Mn+1,b(x).

To prove Statement (g) consider that, according to (II.5) and (II.11), the k-th L-descendant of Mn,b(x) is

(II.11) xk ≡ L
k
(Mn,b(x)) = EkEk+1...En-1(x) for any k < n.

Applying iteratively Lemma 1h we see that x ∈ (0,∞) implies ζ = Ek+1...En-1(x) ∈ (0,∞). When bk = "1", we

have Ek ≡ E+ and therefore xk = Ek(ζ) > 1 (Lemma 1g) which, by definition, gives b'k = "1". When bk = "0", we

have Ek ≡ E- so that xk = Ek(ζ) <1 which gives b'k = "0". Consequently, b'k = bk for every k < n.
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We will be particularly interested in the image under Mn,b of the interval U0∞. The closed intervals

(II.12) Un(b) = Mn,b(U0∞)

satisfy the following lemma.

Lemma 3: Given any binary sequence b and any natural n, Un+1(b) ⊂ Un(b).

Proof (for an illustrative example, see Table I): Consider again (II.10). The function En(x) maps the interval

U0∞ onto the interval [1,∞] when bn = "1" or onto [0,1] when bn = "1". In both cases, therefore, En(U0∞) is a proper

subinterval of R so that, by Lemma 2e, Un+1(b) ≡ Mn+1,b(U0∞) = Mn,b(En(U0∞)) ⊂ Mn,b(U0∞) ≡ Un(b).

The intersection of all the nested intervals Un(b) shall be denoted as

(II.13) U(b) = ∩nUn(b) =  ∩nMn,b(U0∞).

Since the Un(b), n = 1,2,3,...form a sequence of closed, nested intervals, U(b) can be either a proper interval or

a degenerate one containing a single element of R. Theorem I shall show that, with the chosen base mappings and

for a particular range of bases β, U(b) always belongs to the second category, regardless of the choice of b.

Table I. First few intervals Un(b) for the binary sequence B(2)
evaluated in the neperian base β=e.

n inf Un sup Un ρρ(Un)

1 1 ∞ ∞
2 1 2.71828183 1.71828183

3 1.44466786 2.71828183 1.27361397

4 1.99810779 2.71828183 0.72017404

5 1.99810779 2.55012420 0.55202164

6 1.99810779 2.20321879 0.20511100

7 1.99810779 2.03235896 0.03425117

8 1.99810792 2.03235896 0.03425104

9 1.99810792 2.00546799 0.00736007

10 1.99842671 2.00546799 0.00704128
... ... ... ...

32 1.99999999 2.00000000 5.12...e-9

III. Some properties of finite bips and of their derivatives

Some simple properties of bips are evident directly from the definitions and do not need a particular proof. For

example, one can easily verify the following concatenation rules applicable to any two finite binary sequences b

and c (see the discussion of the concatenation of binary sequences following II.7)

(III.1) {bc|x} = {b|{c|x}},

sgn(bc) = sgn(b), zer(bc) = zer(b)+zer(c), len(bc) = len(b)+len(c).

The identity exp(αx) exp(-αx) = 1 amounts to {0|x}{1|x} = 1. More generally, given any binary sequence b

and considering the definition of its inverse sequence Inv(b), the identity yields the inversion rule

(III.2) {b|x}{Inv(b)|x} = 1,

associated with the obvious auxiliary identities

sgn(Inv(b)) = -sgn(b), zer(Inv(b)) = zer(b) + (1-sgn(b))/2, len(Inv(b)) = len(b).
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Another elementary property regards the complementary sequence Cpl(b). From (II.8) it is evident that

complementing the binary sequence in {b|x}α is equivalent to inverting the sign of α (which, in turn, is the same

as replacing the base β by 1/β). We thus obtain the complement rule

(III.3) {b|x}α = {Cpl(b)|x}-α

associated with the auxiliary identities

sgn(Cpl(b)) = -sgn(b), zer(Cpl(b)) = len(b)-zer(b), len(Cpl(b)) = len(b).

The following elementary identities, valid for any real x and y, shall be of some interest. The extended forms

in the right column are obtained from those in the left column by replacing x with {b|x} and applying the

concatenation rule (III.1). Further extensions can be obtained by replacing y with {c|y}.

(III.4) {0|x}{0|y} = {0|x+y}, {0b|x}{0|y} = {0|{b|x}+y},

{1|x}{1|y} = {1|x+y}, {1b|x}{1|y} = {1|{b|x}+y},

{0|x}{1|y} = {1|y-x} = {0|x-y}, {0b|x}{1|y} = {0|{b|x}-y} = {1|y-{b|x}}

{1|x}{0|y} = {0|y-x} = {1|x-y}, {1b|x}{0|y} = {1|{b|x}-y} = {0|y-{b|x}}

We shall often need explicit bounds on bips. The simplest ones are easily derived from the explicit forms of

the bip functions. The following relations list all possibilities for bips of lengths 1 and 2, assuming α>0 and

x∈U0∞.

(III.5) 0 ≤ {0|x} ≤ 1 ≤ {1|x} ≤ ∞,

0 ≤ {01|x} ≤ e
-α

 ≤ {00|x} ≤ 1 ≤ {10|x} ≤ e
α
 ≤ {11|x} ≤ ∞,

Again, additional relations can be obtained by replacing x with {b|x} and applying the concatenation rule.

The following lemma places more sophisticated upper/lower bounds on products of selected finite bips.

Though many such bounds can be deduced, we list only those needed in the rest of the paper.

Lemma 4. Let b ≡ {b0b1b2...bn} be a finite binary sequence and {b|x} the respective bip function evaluated in

base β = exp(α), with α > 0 and x∈U0∞. Then the following statements hold:

(a) For any real r≥0 and s≥0,  αr
{0|x}x

s
 ≤ Min[(s/e)αr-s

, (r/e)
r 
x

s-r
].

      Corollary 1: αr
{0b|x}{b|x}

s
 ≤ Min[(s/e)

sαr-s
, (r/e)

r 
{b|x}

s-r
].

      Corollary 2: αr
{0b|x}{b|x}

r
 ≤ (r/e)

r
.

      Corollary 3: When 0 ≤ s ≤ r, αr
{01b|x}{1b|x}

s
 ≤ (r/e)

r
.

(b) For any real r≥1 and s≥0, αr+s
{01|x}{1|x}

r-1
x

s
 ≤ (s/e)

s
(r/e)

r
.

      Corollary 1: αr+s
{01b|x}{1b|x}

r-1
{b|x}

s
 ≤ (s/e)

s
(r/e)

r
.

      Corollary 2: α3 
{01b|x}{1b|x}{b|x} ≤ 4/e

3
.

      Corollary 3: α4 
{01b|x}{1b|x}{b|x}

2
 ≤ 16/e

4
.

(c) α3
{001|x}{01|x}{1|x} ≤ 27/e

3
.

      Corollary 1: α3
{001b|x}{01b|x}{1b|x} ≤ 27/e

3
.

(d) {1|x} ≥ eαx.

      Corollary 1: {1b|x} ≥ eα{b|x}.

Proofs:

Statement (a): For a fixed α and variable x, the function αr
x

s
exp(-αx) has a maximum of (s/e)

sαr-s
, while for a

fixed x and variable α, its maximum is (r/e)
r
x

s-r
. Hence the result. Corollary 1 follows replacing x by {b|x}.

Corollary 2 follows from Corollary 1 by setting s = r and considering just the first Min argument. Corollary 3

follows from Corollary 1,  using the second Min argument and noticing that {1b|x}
q
 ≤ 1 for any non-positive q.
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Statement (b): Use the identity {1|x}{0|x}=1 and rewrite the left-hand-side side of the inequality as

[αr
{01|x}{1|x}

r
][αs

{0|x}x
s
]. It is then sufficient to apply Statement (a), using the first Min argument. Corollary 1

follows replacing x by {b|x}, Corollary 2 by setting r = 2, s = 1 and Corollary 3 by setting r = s= 2.

Statement (c): When α ≤ 1, rewrite the expression as [α2
{001|x}].[α{01|x}{1|x}]. Since the first factor is

smaller than 1 and, by Statement (a), Corollary 2, [α{01|x}{1|x}] ≤ 1/e, one obtains the upper bound of 1/e which

is smaller than 27/e
3
. When α ≥ 1, use (III.4) and rewrite the expression as α3

{0|y}, where y = {01|x}+{1|x}-x.

Given the assumption, {1|x}-x = exp(αx) - x ≥ 1. Considering that {01|x} > 0, we have y>1 and, since {0|y} is a

decreasing function, {0|y} ≤ {0|1} = e
-α

. Hence {001|x}' ≤ α3
e

-α
 which can not exceed the maximum of 27/e

3
.

Corollary 1 follows replacing x by {b|x}.

Statement (d): The inequality e
x
 ≥ ex gives {1|x} ≡ e

αx
 ≥ eαx. For the Corollary, replace x by {b|x}.

We shall now turn our attention to the derivatives of {b|x} with respect to x. Again, a number of properties

follows directly from definitions. Thus, considering that {b|x} = exp(α sgn(b){T1(b)|x}), one obtains

(III.6) {b|x}' = α sgn(b) {b|x}{T1(b)|x}'

and, through iteration,

(III.7) {b|x}' = αlen(b)
 (-1)

zer(b)
 ΠΠk=0,len(b)-1 {Tk(b)|x},

A further generalization consists in replacing x by a differentiable function f(x):

(III.8) {b|f(x)}' = {b|'f(x)} f '(x) = (-1)
zer(b)

 αlen(b) 
[

 ΠΠk=0,len(b)-1 {Tk(b)|f(x)}] f '(x).

In particular, when c∈B and f(x) = {c|x}, we have (applying the concatenation rule III.1)

(III.9) {bc|x}' ≡ {b|{c|x}}' = {b|'{c|x}}{c|x}'

These identities considerably simplify computer evaluation of bips and their derivatives. As an example,

consider {01011|x} = {0|{1|{0|{1|{1|x}}}}} whose evaluation requires five exponentiations generating the values

{1|x}, {11|x}, {011|x}, {1011|x}, and {01011|x}. To evaluate the derivative {01011|x}', one expands is as

α5
{01011|x}{1011|x}{011|x}{11|x}{1|x} which requires, apart from the factor α5

, the evaluation of the same five

values which now appear as factors in the product.

A recursion formula for the derivative of {b|x} with respect to α, analogous to (III.6), is also easily obtained by

explicit derivation:

(III.10) d{b|x}α/dα ≡ {b|x}
~
 = sgn(b){b|x}[{T1(b)|x}+α{T1(b)|x}

~
].

The evaluation of {b|x}
~
 is again relatively simple and efficient. For example, the evaluation of {01011|x}

~

requires the same five exponentiations plus 10 products and 5 additions.

Applying the differentiation rules for nested functions, one obtains

(III.11) {b|f(α,x)}
~
 = {b|

~
f(α,x)} (df(α,x)/dα),

which, for concatenated sequences, gives

(III.12) {bc|x}
~
 = {b|

~
{c|x}} {c|x}

~
.

The last identity makes it possible to take advantage of efficient sequence-splitting strategies. These do not

lead to any appreciable saving in the case of derivatives with respect to x but, given the increased complexity of

(III.11), they do save some of the extra products required to evaluate the derivatives with respect to α.
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The next lemma places upper bounds on the absolute values of the derivatives of selected types of bips. Again,

though many such bounds can be derived; we list only those which will be used in the rest of this text. Notice also

that, according to (III.7), the derivative {b|x}' is positive when zer(b) is even and negative when it is odd. A minus

sign has been used whenever required in order to deal always with positive quantities.

Lemma 5. Let b ≡ {b0b1b2...bn} be a finite binary sequence and {b|x} the respective bip function in base β = e
α
,

with the values α and x subject to the conditions α > 0 and x∈[0,∞), unless specified otherwise. In addition, let n,

m, k and l be any naturals, unless specified otherwise. Then the following statements hold:

(a) {00|x}' ≤ α/e.

      Corollary: When α ≤ e and k > 0, then {0
2k

|x}' ≤ 1.

(b) -{01|x}' ≤ 4/e
2
.

(c) When α ≤ 1/e and x∈[0,e], then -{01
n
|x}' ≤ 1/e

2
.

(d) When α ≥ 4/e
2
, then -{01

n
|x}' ≤ 4/e

2
. When α ≥ 1, this sharpens to -{01

n
|x}' ≤ (4/e

2
)

n
.

(e) When 1/e ≤ α ≤ 4/e
2
 and x∈U01, then {01

n
|x}' < 0.1986 (numeric estimate) < 4/e

2
.

(f) When x∈U01, then -{01
n
|x}' ≤ 4/e

2
.

(g) When x∈U01 and α ≤ e, then -{01
n
0

2k
|x}' ≤ 4/e

2
.

(h) {001
n
|x}' ≤ -α {01

n
|x}'.

(i) When x∈U01, then {001
n
|x}' ≤ 4α/e

2
.

      In particular, when x∈U01 and α ≤ 1, then {001
n
|x}' ≤ 4/e

2
.

(j) When α ≥ 1 and n > 1, then {001
n
|x}' < 16α/e

4
.

      In particular, when 1 ≤ α ≤ e, then {001
n
|x}' ≤ 16/e

3
.

(k) When x∈U01, α ≤ e and n > 1, then {001
n
0

2k
|x}' ≤ 16/e

3
.

(l) {001|x}' < 27/e
3
.

(m) When α ≤ e, then {0010
2k

|x}' < 27/e
3
.

(n) When x∈U01 and α ≤ e then -{0010
2k

01
n
0

2l
|x}' ≤ 108/e

5
.

(o) When α ≤ e, then -{0010
2k+1

|x}' ≤ 4/e
2
.

(p) When x∈U01 and α ≤ e, then {0010
2k

001
n
0

2l
|x}' ≤ 16/e

4
.

Proofs:

Statement (a): By (III.7), {00|x}' = α2
{00|x}{0|x}. The inequality is obtained from Lemma 4a, Corollary 2 for r

= 1. The Corollary holds for k=1. For k > 1, use (III.9) to write {0
2k+2

|x}' = {0
2k

|'{00|x}}{00|x}' = {0
2k

|'ξ} with ξ =

{00|x}. When α ≤ e we have ξ ≤ 1 so that {0
2k+2

|x}' ≤ {0
2k

|'ξ} and the statement follows by induction.

Statement (b): By (III.7), -{01|x}' = α2
{01|x}{1|x}. Now apply Lemma 4a, Corollary 3 (r=2, s=1).

Statement (c): From (III.6) and (III.9) we have {01
n+1

|x}' = {01
n
|{1|x}}' = α {01

n
|'{1|x}}{1|x}. This points out

the special values of α = 1/e and x = e for which α{1|x} = 1 and the derivatives are the same for all n (see Figure

1b). When α ≤ 1/e and x∈[0,e], we have αx ≤ 1 so that α{1|x} = α.exp(αx) ≤ αe ≤ 1 and |{01
n+1

|x}'| ≤ |{01
n
|'ξ}|

with ξ = {1|x} ≤ e. Since ξ∈[0,e], the process can be iterated until |{01
n+1

|x}'| ≤ |{01|'η}|, with η∈[0,e]. By Lemma

4a, Corollary 2, the function |{01|x}'| = α2
{01|x}{1|x} can not exceed α/e which, given the assumption, is

bounded by 1/e
2
.

Statement (d): Applying twice over (III.6), one obtains

{01
n+1

|x}' = α2
 {01

n+1
|x}{1

n+1
|x}' = α2

 {01
n+1

|x}{1
n+1

|x}{1
n
|x}'.

Multiplying the right-hand side by the unity {1
n+1

|x}{01
n
|x} (see III.2), we obtain

{01
n+1

|x}' = α2
 {01

n+1
|x}{1

n+1
|x}

2
 {01

n
|x}{1

n
|x}' = α {01|ξ}{1|ξ}

2
 {01

n
|x}', where ξ = {1

n
|x}.

Applying Lemma 4a, Corollary 2 with r = 2, this yields

|{01
n+1

|x}'| ≤ (4/αe
2
) |{01

n
|x}'|.
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For α ≥ 4/e
2
, the inequality gives |{01

n+1
|x}'| ≤ |{01

n
|x}'| which iterates to |{01

n+1
|x}'| ≤ |{01|x}'|. For α ≥ 1 the

inequality sharpens to |{01
n+1

|x}'| ≤ (4/e
2
)|{01

n
|x}'| which iterates to |{01

n+1
|x}'| ≤ (4/e

2
)

n
|{01|x}'|. The rest follows

from Statement (b).

Statement (e): Within the interval 1/e< α <4/e
2
, the functions {01

n
|x}' defy explicit analysis. The graphs shown

in Figures 1c) to 1f) illustrate the behavior of |{01
n
|x}'| for n = 1 to 60 and for several values of α distributed

across and close to this interval (the shown graphs were selected from a much more detailed set). In order to

clarify the overall behavior of the functions, they are plotted over a range of x-values which is considerably wider

than the interval U01 of interest. For x ∈ U01, the absolute values of the derivatives remain abundantly below 4/e
2
.

Numeric search for the maximum with respect to n, α and x shows beyond any doubt that for α∈[1/e,4/e
2
] and

x∈[0,1], the functions never exceed 0.1986... (most probably the value of -{01|x}', evaluated for α = 4/e
2
 and

x=1). This is abundantly smaller than 4/e
2
 (equal to about 0.5413...). Figure 1i provides an additional and very

convincing (though not essential) illustration of this fact.

Statement (f) is a logical combination of statements (c), (d) and (e).

Statement (g):.When k=0, Statement (f) is directly applicable. For k ≥ 1, use (III.9) to write {01
n
0

2k
|x}' =

{01
n
|'{0

2k
|x}}{0

2k
|x}' and apply the Corollary of Statement (a) to the second term and Statement (f) to the first one

(notice that {0
2k

|x}∈U01 for any x so that, when k ≥ 1, the condition x∈U01 may be dropped).

Statement (h): Use (III.9) to write {001
n
|x}' = -α {001

n
|x}{01

n
|x}' and consider that {001

n
|x} ≤ 1 for any x.

Statement (i) is a combination of statements (f) and (h).

Statement (j): According to (e), when α ≥ 1 and n > 1, -{01
n
|x}' ≤ (4/e

2
)

n
 ≤ 16/e

4
.

Applying this to (i), we have {001
n
|x}' ≤ 16α/e

4
.

Statement (k): Combining Statement (i) and Statement (j), we deduce that when x∈U01, α ≤ e and n > 1, then

{001
n
|x}' < max(16/e

3
,4/e

2
) = 16/e

3
. For k > 1, use (III.9) to write {001

n
0

2k
|x}' = {001

n
|'{0

2k
|x}}{0

2k
|x}' and apply

the result for k = 0 to the first term and the Corollary of Statement (a) to the second one.

Statement (l): Since {001|x}' = α3
{001|x}{01|x}{1|x}, apply Lemma 4c.

Statement (m): When k=0, Statement (l) is directly applicable. For k>0, use (III.9) to write {0010
2k

|x}' =

{001|'{0
2k

|x}}{0
2k

|x}' and apply Statement (l) to the first factor and the Corollary of Statement (a) to the second

one.

Statement (n): By (III.9), {0010
2k

01
n
0

2l
|x}' = {0010

2k
|'{01

n
0

2l
|x}}{01

n
0

2l
|x}'. Apply Statement (m) to the first

factor and Statement (g) to the second one.

Statement (o): By (III.7), -{0010|x}' = α4
{0010|x}{010|x}{10|x}{0|x}. Considering that {0010|x} ≤ 1 and

applying Lemma 4b, Corollary 2, to the last three terms, one obtains -{0010|x}' ≤ 4α/e
3
 ≤ 4/e

2
. For k ≥ 1, use

(III.9) to write {0010
2k+1

|x}' = {0010|'{0
2k

|x}}{0
2k

|x}' and apply the result for k=0 to the first term and the

Corollary of Statement (a) to the second one.

Statement (p): Use (III.9) to write {0010
2k

001
n
0

2l
|x}' = {0010

2k+1
|'{01

n
0

2l
|x}}{01

n
0

2l
|x}' and apply Statement (o)

to the first term and Statement (g) to the second one.

The upper bounds set by Lemma 5 are often grossly conservative due to the fact that, in general, the distinct

factors in a derivative expression do not attain their individual bounds simultaneously. We shall see, however, the

only thing that really matters for the purposes of this paper is whether the absolute value of a derivative is smaller

than 1.
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To a purist it will appear unfortunate that the proof of Lemma 4, Statement (e) relies on numeric analysis. Such

a criticism may be countered by pointing out that, in cases where explicit analytical solution is not available,

renouncing to advance a field only because numerical analysis looks less respectable would not be wise -

especially since the convincing numeric evidence is likely to stimulate others in a quest for a more 'noble' proof.

In the age of advancing experimental mathematics [3], a cautious use of numeric results in proofs is becoming an

accepted fact.

Figure 1. Functions -{01
n
|x}'

Each of the graphs (a)-(h) plots the functions -{01
n
|x}' for a value of α and for n=1-60 (thin, with the

rightmost maximum corresponding to n=1). The bold line present in all graphs corresponds to -{01|x}' for α =

4/e
2
. Notice the extreme sensitivity of  -{01

n
|x}' to variations of α in the region around 1/e.

The condition we want to verify is that, within the interval x∈[0,1], all the functions are bounded by the

value 4/e
2
 = 0.5413... (upper horizontal line). This has been proved analytically for α ≤ 1/e and α ≥ 4/e

2
 but

needs to be demonstrated for α∈(1/e, 4/e
2
). Numerical analysis shows that within the 2D interval of x∈[0,1] and

α∈(1/e, 4/e
2
), none of the functions exceeds 0.1986.... (lower horizontal line) which seems to coincide with -

{01|x}', evaluated at x = 1 and α = 4/e
2
. This is illustrated in graph (i) which contains the 20000 functions -

{01
n
|x}' computed for n = 1-100 and for 200 α-values evenly distributed within the interval [1/e,4/e

2
].

(a)

α = 0.35

(b)

α = 1/e =

    0.3678...

(c)

α = 0.37

(d)

α = 0.38

(e)

α = 0.40

(f)

α = 0.50

(g)

α = 4/e
2
 =

    0.5413...

(i)(h)

α = 0.65
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The remarkable behavior of -{01
n
|x}' for large n in the immediate vicinity of α = 1/e (Figures 1a,b,c) is quite

complicated but fortunately occurs outside the x-values range which interests us here. Its nature is easy to

comprehend since, when α = 1/e, then limn→∞{1
n
|x} is equal to e for x ≤ e and to infinity for x > e (see Figure 2)

thus forming, in the limit, a sharp discontinuity at x = e.

IV. The convergence theorem

The following three lemmas are the last ones needed for the proof of Theorem I.

Lemma 6. Let b and b' be two infinite binary sequences such that, for some natural n, b' = Tn(b) and U(b')

contains a single element r' of R. Then U(b) also contains just one element r of R and r = Mn,b(r') ≡ {Sn(b)|r'}.

Proof. From the premises we have Un+k(b) ≡ Mn+k,b(U0∞) = Mn,b(Mk,b'(U0∞)) = Mn,b(Uk(b')) for any k ≥ 0. Since

the consecutive intervals Ui(b) are nested, U(b) = ∩iUi(b) = ∩kUn+k(b) ⇒ U(b) = ∩kMn,b(Uk(b')). Applying Lemma

2d, this gives U(b) = Mn,b(∩kUk(b')) and since, by assumption, ∩kUk(b') contains just the element r', U(b)

necessarily also contains just one element, namely r = Mn,b(r').

Lemma 7. Given a binary sequence b, let {Un(b)} be the sequence of intervals defined by (II.12). Assume

further that there exists a subsequence {Uk(i)(b), i=1,2,3,..., k(i) < k(i+1)} such that limi→∞ ρ(Uk(i)(b)) = 0. Then

also limn→∞ ρ(Un(b)) = 0 and the interval U(b) = ∩nUn(b) contains just one element of R.

Proof: Due to the premises, there exists for every n an in such that k(in)≤ n <k(in+1) and limn→∞k(in) = ∞. By

Lemma 3, the consecutive intervals Un(b) are nested, so that ρ(Un(b))≤ρ(Uk(in)(b)). Hence limn→∞ ρ(Un(b)) ≤ limn→∞

ρ(Uk(in)(b)) = limi→∞ ρ(Uk(i)(b)) = 0 and, since ρ(U) ≥0 for any interval U, limn→∞ ρ(Un(b)) = 0.

Lemma 8. Let f(x) be a function on R which is monotonous and differentiable everywhere in a finite interval

(a,b). Assume further that there exists a value η>0 such that |(f'(x))| ≤ η for every x∈(a,b). Then f(x) maps (a,b)

onto an interval (a',b') whose size satisfies the inequality ρ((a',b')) ≤ ηρ((a,b)) = η(b-a).

Proof: Since f(x) is continuous and monotonous in the interval (a,b), it maps it again onto an interval and the

size of the image interval is ρ(f((a,b))) = |f(b)-f(a)|. Given the existence of the derivative in (a,b), one has

).ab(dx|)x('f||dx)x('f||)a(f)b(f|))b,a(f(
b

a

b

a
−η≤≤=−=ρ ∫∫

Theorem I.

Given an infinite binary sequence b∈B, denote as U(b) the interval of R defined by (II.13) in base β = e
α
.

Denote further as C0 the set [-e,-e
-1

)∪[0]∪(e
-1

,e]. Then

(1) When α∈C0 then, for any b∈B, U(b) contains a single element of R.

(2) When α∉C0 then there exists a sequence b
#∈B for which U(b) contains more than one element of R.

Proof:

a) When α = 0, we have {bn|x} = 1 for any bn∈Bn. The intervals Un(b) are therefore all degenerate and contain

just the element 1. Consequently, so does U(b) and Statement (1) is satisfied.

b) According to (III.3), inverting the sign of α is equivalent to complementing the sequence b. Since every

sequence b∈B has in B a complement Cpl(b), whenever either of the two Statements holds for a particular value

of α, it holds also for -α. It is therefore sufficient to prove the theorem for positive values of α.

c) Consider the sequence b ≡ {1} for which Un({1}) = [{1
n
|0},∞].
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When α > e
-1

, we apply Lemma 4d which gives {1|x} ≥ eαx = x+xη, where η = eα-1 > 0. Considering that

{1
n
|x} ≥ 1, the inequality can used to write {1

n+1
|x} = {1|{1

n
|x}} ≥ {1

n
|x}+{1

n
|x}η ≥ {1

n
|x}+η. By iteration,

therefore, {1
n+1

|x} ≥ {1|x}+nη, which proves that {1
n
|x} diverges to ∞ for any x∈R. Consequently, limn→∞{1

n
|0} =

∞ so that U({1}) contains just the element ∞∈R, in accordance with Statement (1).

When 0< α ≤ e
-1

, the increasing function {1|x} = exp(αx) intersects the line y = x in two points r1 < e < r2

which are the two roots of the equation {1|x} = x (see Fig.2a). The derivative {1|x}' is itself an increasing function

smaller than 1 at x = r1 and larger than 1 at x = r2. Consequently, r1 is an attractor of {1|x} while r2 is a repulsor. It

is easy to show by textbook means that repetitive applications of {1|x}, i.e., the functions {1
n
|x}, converge to r1 for

any x < r2, diverge to ∞ for x > r2 and remain invariant for x = r2. The nested intervals Un({1}) ≡ [{1
n
|0},∞] thus

converge to the non-degenerate interval U({1}) = [r1,∞].

Figure 2. The mapping {1|x}

The graphs are drawn for three different values of α. (a) When α<1/e, the equation {1|x} = x has two distinct

roots r1 and r2, the first of which is an attractor and the second a repulsor. The consecutive images of three

different x-values under the repeated mappings {1
n
|x} are shown (small dots). Clearly, limn→∞{1

n
|x}=r1 for any

x<r2 and limn→∞{1
n
|x}=∞ for x>r2. (b). (b) For α=1/e, the two roots coalesce into r = e, but the behavior remains

essentially the same. (c) When α>1/e, there is no root and limn→∞{1
n
|x}=∞ for any x.

It is worth noticing that, while each Un({1}) is a proper interval and a continuous image of Un-1(b) under {1|x},

the intersection U({1}) of all such intervals contains points which can not be written in the form limn→∞{1
n
|x} for

some x∈U0,∞. The limit limn→∞{1
n
|x} in fact exists for every x∈R but it can assume only one of three possible

values, namely r1, r2 and ∞. If we interpret the definition (II.13) as an intersection of intervals, the result is the

interval [r1,∞]; while if we intend it as an intersection of subsets, the result is a discrete set containing just three

elements.

When α = e
-1

, the two roots r1 and r2 coalesce into a single one (r1 = r2 = r ≡ e) which is an attractor for x < r

and a repulsor for x > r (Fig.2b). The nested intervals Un({1}) ≡ [{1
n
|0},∞] now converge to the interval U({1}) =

[r,∞] and the discrete set of the possible values of limn→∞{1
n
|x} contains only r and ∞.

What interests us in the present context is that when 0 < α ≤ e
-1

 then, regardless of the interpretation of U(b),

Statement (2) is satisfied by identifying b
#
 with sequence {1}.

d) Next we shall concentrate on the sequence {0}.

α = 0.3 < 1/e

r1

r2

r

α = 1/e

α = 0.45 > 1/e
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Consider the odd intervals U2n+1({0}) = [{0
2n+1

|0},{0
2n+1

|∞}]. Since {0
2n+1

|x} is a decreasing function of x,

U2n+1({0}) = [{0
2n+1

|∞},{0
2n+1

|0}] = [{0
2n

|{0|∞}},{0
2n

|{0|0}}] = [Z
n
(0),Z

n
(1)] = Z

n
(U01), where the iterated mapping

Z(x) ≡ {00|x}, is a monotonously increasing function which maps U01 into itself. By Lemma 5a, the derivative of

Z(x) does not exceed α/e. Iterative application of Lemma 8 therefore yields ρ([Z
n
(0),Z

n
(1)]) ≤ (α/e)

n
 so that, when

0< α < e, the sizes of the odd intervals U2n+1({0}) converge to zero. Lemma 7 extends this to lim n→∞ ρ(Un({0})) =

0.

When α = e, the situation requires a more subtle analysis (Fig.3b). The equation Z(x) = x has in this case a

single root at r = (1/e) and Z'(r) = 1. Since Z'(r) < 1 for any element x ≠ r of U01, consecutive applications of Z(x)

to U01 produce a series of nested intervals U2n+1({0}) each of which brackets r. Suppose that the series

{U2n+1({0})} converges to some non-degenerate limit interval UL. Then the extremes of UL would have to be two

numbers a and b such that a < r < b and Z(a) = a, Z(b) = b, contradicting the fact that r is a unique solution of Z(x)

= x. The series of intervals therefore converges to the single point r and, again, limn→∞ ρ(Un({0})) = 0.

We have thus shown that Statement (1) holds for the sequence {0} and any 0< α ≤ e.

When α>e (Fig.3c), the equation Z(x) = x has in U01 three roots r1<r2<r3 such that |Z'(r1)| < 1, |Z'(r2)| > 1 and

|Z'(r3)|<1. The external roots r1 and r3 are therefore attractors while the central one (coincident with the root of

{0|x}=x) is a repulsor. Repeated applications of Z(x) map the interval [r1,r3] onto itself and make any point of U01

external to the interval [r1,r3] converge towards either r1 or r3, whichever is closer. Consequently, limn→∞ Un({0})

coincides with the non-degenerate interval [r1,r3].

Figure 3. Mappings {Zn|x} in the interval x∈∈[0,1]

The three graphs illustrate the mappings Z
n
(x) ≡ {0

2n
|x} for n = 1 (bold), 4 (intermediate) and 8 for three

values of α. (a) When α<e, the equation Z(x)=x has only one root r which is an attractor (i.e., repeated mappings

Z(x) map x ever closer to r) and limn→∞ Z
n
(x) = r for any x∈[0,1]. (b) When α=e, there is still just one root

which can be shown to be also an attractor (see text). (c) When α>e, however, there are three roots r1, r2 and r3

of which r1 and r3 are attractors (derivative Z'(x) smaller than 1) and r2 is a repulsor (derivative greater than 1)

and we have limn→∞ Z
n
(x) = r1 for x<r2 and limn→∞ Z

n
(x) = r3 for x>r2.

When α > e, the sequence {0
n
|x} is stationary for x = r2. Any other choice of x, however, leads to sequence

which has two x-independent accumulation points, r1 and r3, and oscillates between their neighborhoods. Since

this excludes the existence of the limit limn→∞ {0
n
|x}, it follows that when α > e, Statement (2) can be satisfied by

identifying b
#
 with the sequence {0}. This, together with the results of Sections (c) and (b) of this proof,

concludes the proof of Statement (2).

α = 2

r

α = e

r

α = 4

r2

r1

r3
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e) When α∈(e
-1

,e], both sequences {0} and {1} satisfy Statement (1). From Lemma 6 it then follows that

Statement (1) holds for any sequence b∈B which contains either {0} or {1} as a trailer, i.e., one for which there

exists a natural n such that either Tn(b) = {0} or Tn(b) = {1}.

f) We shall now analyze the case of α∈(e
-1

,e] and sequences b∈B which start with "0" and do not have {0} or

{1} as a trailer. A basic feature of such sequences is that, given any natural k, there exist natural n ≥ k and m ≥ k

such than bn="0" and bm="1". Consequently, each such sequences can be interpreted as an unending concatenation

of finite fragments belonging to one of the following types (with n ≥ 1, k ≥ 0):

type Vn,k: {01
n 
0

2k
},

type Wn,k: {001
n 
0

2k
}.

It is evident that the fragmentation is unique (though this is not really essential for the purposes of this proof).

For reasons which shall become clear later, we shall not use directly the W1,k fragments but rather the following P

and Q fragments with n ≥ 1 and k,l ≥ 0:

type Pk,n,l: {001
 
0

2k 
01

n 
0

2l
} ≡ W1,k Vn,l ,

type Qk,n,l: {001
 
0

2k 
001

n 
0

2l
} ≡ W1,k Wn,l.

This increases the number of fragment types but, since every W1,k fragment must be necessarily followed by

one of the two basic types, it does not affect the uniqueness of the fragmentation. As an example, consider the

sequence {001 0110000 01111 001100 01...} which leads first to the chain of fragments {W1,0V2,2V4,0W2,1...} and,

subsequently, {P0,2,2V4,0W2,1...}.

The i-th fragment shall be denoted generically as Fµ, µ=0,1,2,..., and the index of its starting element as kµ (this

implies k0=0 and kµ < kµ+1 for any µ).

Given an integer ν ≥ 0, consider the mapping Mj,b(U0∞) for j = kν. Since bj is the starting element of fragment

Fν, it is certainly "0" and since {0|x} maps U0∞ onto U01, this implies that Mj,b(U0∞) = Mj-1,b(U01). Considering

(II.10) and our definitions of the fragments, we can write Mj-1,b(x) = {F0F1F2...Fν-1|x} = F0F1F2...Fν-1(x), where the

partial mappings Fµ are defined as Fµ(x) ≡ {Fµ|x} which amount to

Fµ(x) ≡ {Vn,k|x} = {01
n 
0

2k
|x} when Fµ is of type Vn,k ,

Fµ(x) ≡ {Wn,k|x} = {001
n 
0

2k
|x} when it is of type Wn,k (n>1),

Fµ(x) ≡ {Pk,n,l|x} = {001
 
0

2k 
01

n 
0

2l
|x} when it is of type Pk,n,l , and

Fµ(x) ≡ {Qk,n,l|x} = {001
 
0

2k 
001

n 
0

2l
|x} when it is of type Qk,n,l.

Combining these facts, we have Uj(b) ≡ Mj,b(U0∞) = F0F1F2...Fν-1(U01).

Since nested operators are executed from right to left, the execution of Fµ(x) terminates always with the

mapping E
-
 ≡ {0|x}. Considering the continuity and monotonicity of the mappings, it follows that, given any

interval U ⊆U01, each Fµ maps it again onto a sub-interval of U01.

For x∈U01, the absolute values of the derivatives of all the mappings Fµ(x) are bounded by λ = 16/e
3
, since

|{Vn,k|x}'| = |{01
n 
0

2k
|x}'| ≤ 4/e

2
 < 16/e

3
, according to Lemma 5g,

|{Wn,k|x}'| = |{001
n 
0

2k
|x}'| ≤ 16/e

3
, according to Lemma 5k,

|{Pk,n,l|x}'| = |{001
 
0

2k 
01

n 
0

2l
|x}'|' ≤ 108/e

5
 < 16/e

3
, according to Lemma 5n, and

|{Qk,n,l|x}'| = |{001
 
0

2k 
001

n 
0

2l
|x}'| ≤ 16/e

4
 < 16/e

3
, according to Lemma 5p.

According to Lemma 8 this implies that, when U ⊆ U01 and e
-1

 < α ≤ e, then the size of the image interval

Fµ(U) satisfies the inequality ρ(Fµ(U)) ≤ λ ρ(U). In other words, each of the mappings Fµ shrinks the source

interval U by at least a pre-determined factor λ < 1. Returning to the interval Uj(b), it follows that its size has an

upper bound given by ρ(Ukν(b)) = ρ(F0F1F2...Fν-1(U01)) ≤ λν
 and therefore limν→∞ ρ(Ukν(b)) = 0.
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We have thus found a subsequence of the intervals Un(b) which converges to a single point of R. It is now

sufficient to apply Lemma 7 to see that the same applies also to the sequence Un(b), which concludes the proof of

the validity of Statement (1) for sequences b of the considered type.

g) The remaining case to be analyzed is that of α∈(e
-1

,e] and sequences b∈B which start with "1" and do not

have {0} or {1} as a trailer. When b is such a sequence, there necessarily exists a finite n such that bn = "0". The

trailer Tn(b) is then of the type considered in Section (f) of this proof and thus satisfies Statement (1). Applying

Lemma 6, it follows that the same holds also for the original sequence b.

h) The combination of Sections (c) through (g) of this proof covers all possible infinite sequences and thus

proves the validity of Statement (1) for any b∈B and α∈(e
-1

,e]. To complete the proof, it is sufficient to combine

this result with those of Sections (a) and (b).

The reason why we have avoided fragments of the type W1,k is that, by Lemma 5m, the lowest upper bound on

the derivative of W1,k(x) is 27/e
3
, which exceeds than 1 (there indeed exist values of x∈U01 and α∈(e

-1
,e] for

which {001|x}' > 1).

The following corollary is an elementary consequence of Theorem I and of the basic properties of the real

numbers set. We mention it explicitly because its particular wording will become useful later on.

Corollary. Given any infinite binary sequence b∈B, a base β=e
α
 such that α∈C0, and any x∈R, the sequence

{Sn(b)|x} converges to an element r(b, α)∈R which is independent of x.

One must stress that when α∉C0, the sequence {Sn(b)|x} may still converge to a unique element of R. The

problem is that even if does so, it is not possible to guarantee that the limit exists for any choice of b∈B and that

its value does not depend upon the starting point x. To illustrate the situation, let us consider a few examples.

(a) Sequence b = {1}. We have seen that when 0< α ≤1/e, the equation {1|x} = x has two roots r1(α) and r2(α),

r1 ≤ e ≤ r2, and that {Sn(b)|x} ≡ {1
n
|x} converges to r1 for any x < r2, remains invariant for x = r2 and diverges (i.e.,

converges to ∞) for x > r2. When α is negative, Sn(b) equals Sn(Cpl(b)) evaluated for α' = -α. It was shown that

the complementary sequence Cpl(b) = {0} satisfies Statement (1) of the Theorem for any α' ≤ e but beyond that

point {Sn(Cpl(b))|x} starts oscillating between the neighborhoods of two distinct solutions of {00|x}=x.

Consequently, {Sn(b)|x} converges for any α ≥ -e and oscillates for α < -e. Moreover, while the convergence of

{Sn(b)|x} in R is guaranteed for any α ≥ -e, the independence of the limit with respect to the choice of x occurs

only when α > 1/e or -e ≤ α ≤ 0.

Notice that within the region α∈[-e,e
-1

) where the limit exists and is finite, r1(α) coincides with the hyperpower

function [1] Θ(β) = {1|1} of β = e
α
.

(b) Sequence b = {01}. It follows from Lemma 5b and Lemma 8 that in this case Un(b) converges to a single

point for any α > 0. For negative values of α we can analyze the complement sequence evaluated for α' = -α.

However, Cpl(b) ≡ {10} = {101} = {1b} so that, by Lemma 6, Un(Cpl(b)) also converges for any positive α'. It

follows that Un(b) converges to a single point for any α and, in virtue of Lemma 6, the same applies to all

sequences which contain {01} as a trailer.

(c) There are many sequences which converge to an x-independent value for any α ≥ 0. For example, in virtue

of Lemma 4b, Corollary 2 and of Lemma 6, this category includes all sequences which contain periodic or a-

periodic trailers composed of the fragments {011} and {010}. Likewise, in virtue of Lemma 5f, all sequences

containing a trailer composed only of fragments {01
n
} belong to this class.
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What emerges is the following picture:

Each infinite binary sequence b defines a region Cb of α-values for which the sequence {Sn(b)|x} converges to

an x-independent limit. By Theorem I, Cb certainly includes C0 but, depending upon b, it may be considerably

more extensive; we have seen cases in which it includes all real numbers. When Cb does not include all real

numbers and α∉Cb, the sequence {Sn(b)|x} may still converge to a unique element of R but the limit is no longer

the same for every x∈R (a similar situation has been discussed also in the context of hyperpower functions [4])

Alternatively, the sequence may have a set Ab(α) of multiple accumulation points and oscillate between their

neighborhoods. When α enters Cb, however, all the elements of Ab(α) coalesce into a single one and Theorem I

assures us that

   i) when α∈C0 then all the sets Ab(α) are coalesced and

   ii) C0 includes all values α for which such a simultaneous coalescence can happen.

The theorem could be therefore re-stated simply as C0 = ∩bCb.

This discussion opens a number of interesting problems. For example, one might like to delimit the subset Bt of

all totally convergent sequences b∈B for which Cb covers all real numbers. Another open problem is the

maximum cardinality of the sets Ab(α). Such points, however, exceed the scope of this paper and will be tackled

elsewhere.

V. The BK bijection and its properties

Theorem I legitimates the following definition of a mapping K:B→R, applicable for any α∈C0

(V.1) K(b) = ∩nUn,b ≡ ∩n Mn,b([0,∞)).

In the rest of this paper we will assume that α∈C0' ≡ [-e,-e
-1

)∪(e
-1

,e], excluding the trivial case of α = 0.

Considering the equivalence (III.3) between inversion of the sign of α and complementing the sequences, we

actually need to consider only values of α∈(e
-1

,e] which include bases β from e
1/e

 = 1.444667... to e
e
 =

15.154262....

We now have a mapping B(r):R→B which associates a binary sequence to every element r of R and a mapping

K(b):B→R which associates an element of R to every binary sequence b. We must still try and establish a relation

between them. The task has been partially tackled in Lemma 2g which indicates that the two mappings might be

an inverse of each other. It also points out a potential problem with some particular sequences which needs to be

dealt with first.

Consider the sequence {01...} which maps through K onto the real number 0. Since E+(0) and E-(0) both equal

1, the sequences t001 ≡ {001} and t101 ≡ {101} both map onto the real number 1 while, according to the definition

(II.6), B(1) is unique and coincides with t101. A similar situation arises with any pair of sequences containing a

common starting section followed by the trailer t001 in one case and t101 in the other - they both map through K

onto the same real number which, however, maps back through B uniquely onto the sequence having t101 as its

trailer.

In order to remove the uncertainty and pave the way for a bijection, we simply remove from B the redundant

binary sequences containing the trailer t001. The resulting reduced set, denoted as B*, is the only one with which

we shall henceforth concern ourselves. Notice that the mapping B:R→B of (II.6) is actually of the type B:R→B*

since it never maps any element of R onto one of the excluded sequences.

There is a close relation between this image-set reduction process and what one does in binary power-series

representations of real numbers. There, in order to achieve a biunivocal correspondence, the trailing sequence 01

of binary digits has to be excluded from the representation space in favor of the equivalent trailer 10.
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Lemma 9. When α∈C0', the mapping K:B*→R  is one-to-one, i.e., if b,b'∈B* and b≠b' then K(b) ≠ K(b').

Proof. With no loss of generality, we assume α∈(e
-1

,e]. Suppose that the first difference between b and b'

occurs at the m-th digit and that bm="0" and b'm="1". Then the nested intervals Un,b ≡ Mn,b(U0∞) and Un,b' ≡
Mn,b'(U0∞) are the same for any n<m. For n = m, however, we obtain two distinct intervals, due to the fact that Um,b

≡ Mm,b(U0∞) = Mm-1,b(E
-
(U0∞)) = Mm-1,b(U01), Um,b' ≡ Mm,b'(U0∞) = Mm-1,b'(E

+
(U0∞)) = Mm-1,b(U1∞) and the mapping

Mm-1,b(x) is continuous and monotonous (Lemma 2a,f). The intervals Um,b and Um,b' have one point in common,

namely the image Mm-1,b(1) of 1. According to Lemma 3, Un,b ⊂ Um,b and Un,b' ⊂ Um,b' for any n > m. Consequently,

two possible situations can arise:

a) either K(b) ≠ K(b'), in which case the proof is finished, or

b) the two trailing sequences Tm+1(b) and Tm+1(b') both correspond to the real number 0. If that were not the case,

in fact, there would exist an M > m such that bM ≠ b'M. This would make the intervals Un,b and Un,b' disjoint for any

n ≥ M and, consequently, we would have again K(b) ≠ K(b').

Case (b), however, implies that bm+1 = b'm+1 = 0 and bm+k = b'm+k = 1 for any k>1, which is impossible since then the

sequence b would belong to the excluded ones, contradicting the assumption b∈B*.

Lemma 10. When α∈C0', the mapping K:B*→R is an injection, i.e., given any element x∈R, there exists an

element b∈B* such that K(b) = x. Moreover, K is an inverse of B:R→B*, i.e., K(B(x)) = x.

Proof: We assume again that α∈(e
-1

,e]. Using (II.6), construct the unique sequence b ≡ B(r) ∈ B*. Now, for

any natural n, Mn,b maps U0∞ onto the interval Un,b = Mn,b(U0∞). The n-th descendant of x, defined by (II.5) as

L
n
(x), certainly belongs to U0∞ so that its image under Mn,b(L

n
(x)) belongs to Un,b. Since the mapping

Mn,b:U0∞→Un,b is a bijection with the inverse L
n
 (Lemma 2c), we have Mn,b(L

n
(x)) = x and therefore x ∈ Un,b for

any n. Consequently x∈∩nUn,b. But, according to Theorem I, ∩nUn,b contains exactly one element of R, which, by

the definition (V.1), is K(b). Hence K(b) = ∩nUn,b = x.

Put together, the last two lemmas amount to

Theorem II.

When α∈[-e,-e
-1

)∪(e
-1

,e], the mappings K:B*→R and B:R→B* are bijections and inverses of each other.

We shall henceforth refer to the pair of mappings B and K as the BK bijection. In the remainder of this Section

we shall try and establish some of its basic properties and discuss a potential application.

The next lemma shows that any real number r can be approximated by means of finite starting sections Sn(B(r))

of its corresponding binary sequence B(r). It also shows that the metric "weight" of an element bk of a binary

sequence decreases with increasing index k.

Lemma 11. Given a binary sequence b∈B* corresponding to r = K(b) and a positive number ε, there exists an

integer n such that any sequence b'∈B* such that Sn(b') = Sn(b) corresponds to a real number r' = K(b') which

differs from r by less than ε.

Proof: By Theorem I, limn→∞ρ(Un,b) ≡ limn→∞ ρ(Mn,b(U0∞)) = 0. Consequently, there exists an nε such that

ρ(Un,b) < ε for any n > nε. Since any sequence B* with the first nε elements identical to those of b maps U0∞ into

Un,b, it follows that K(b) and K(b') both belong to Un,b and therefore |r-r'| < ε.

Considering the way the BK bijection was constructed, the following Lemma is nearly trivial. However, it is

conceptually important since it establishes the possibility of carrying out a number of mathematical operations on

R by means of isomorphic mappings in B*.
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Lemma 12. Let b∈B* and x = K(b). Then

(a) L
n
(x) ≡ L

n
(K(b)) = K(Tn(b)).

      Special case for n=1: abs(lnβ(x)) = K(T1(b)).

(b) {c|x} ≡ {c|K(b)} = K(cb) for any finite binary sequence c.

      Special cases: exp(αx) = K(1b) and exp(-αx) = K(0b).

(c) x
-1

 = K(Inv(b)).

Proofs.

Statement (a): Let b' = Tn(b). By Theorem I, Ub' contains a single element of R which is K(b') = K(Tn(b)) and,

by Lemma 6, x = K(b) = Mn,b(K(b')) = Mn,b(K(Tn(b))). By Lemma 2c, L
n
 is the inverse mapping of Mn,b on its

image set (which contains K(b)). Hence, applying L
n
 to both sides of the equation, we obtain the result.

Statement (b): Let n = len(c). Then Tn(cb) = b and Mn,cb(x) = {c|x}. Applying again Lemma 6, one obtains

K(cb) = Mn,cb(K(Tn(cb))) = Mn,cb(K(b)) = {c|x}.

Statement (c): Let b = {0T1(b)}. Then Inv(b) = {1T1(b)} and, applying Statement (b), K(Inv(b)) = K(1T1(b)) =

{1|K(T1(b))} = 1/{0|K(T1(b))} = 1/K(b) = 1/x. Similarly, in the case of b = {1T1(b)} we have K(Inv(b)) =

K(0T1(b)) = {0|K(T1(b))} = 1/{1|K(T1(b))} = 1/K(b) = 1/x.

The ease with which it is possible to determine the binary sequence corresponding to x
-1

 from the one for x,

one naturally wonders whether there might also exist simple algorithms for the binary operations in B* isomorphic

with the four basic binary arithmetic operations in R. Unfortunately, what is presently lacking are efficient

algorithms for the sum and difference of two non-negative reals represented by their images in B*. In other words,

given two sequences a,b∈B*, we don't know how to efficiently compute the sequences s,d∈B* such that K(s) =

K(a)+K(b) and, assuming K(a) ≥ K(b), K(d) = K(a)-K(b). Were this possible, multiplication and division of K(a)

and K(b) would become trivial because, according to (III.4) and Lemma 6, they reduce to summing/subtracting the

first descendants of the two numbers, i.e., of K(T1(a)) and K(T1(b)).

The following lemma introduces a strict, total ordering of the set B* which is isomorphic with the natural

ordering of real numbers. Remembering that zer(Sn(b)) is the number of "0" elements among the first n ones of b,

the ordering "recipe" turns out to be surprisingly simple.

Lemma 13. Assume α∈(e
-1

,e] and let b,b'∈B* be two binary sequences such that their first n elements are

identical, while bn= "0" and b'n= "1". Then K(b) < K(b') when zer(Sn(b)) is even and K(b) > K(b') when it is odd.

Proof. K(b) ∈ Mn+1,b(U0∞) = Mn,b(U01) and K(b') ∈ Mn+1,b'(U0∞) = Mn,b'(U1∞) ≡ Mn,b(U1∞). Since all elements of

U01 are smaller than any element of U1∞,, the statement follows from Lemma 2f.

Definition. For α∈(e
-1

,e], the ordering of B* isomorphic with that of R can be therefore defined as follows:

Let b,b'∈B* be two distinct binary sequences such that their first n elements are identical and bn= "0", b'n= "1".

Then we set b < b' when zer(Sn(b)) is even and b > b' when it is odd. In the case of α∈[-e,-e
-1

), the definition needs

to be modified by considering the complement sequences Cpl(b) and Cpl(b') instead of b and b' themselves

(alternatively, one can replace the zero count zer(Sn(b)) by the count of "1"s, i.e., len(Sn(b)) - zer(Sn(b))).

Extensions of K(b) and related functions.

For any fixed sequence b∈B, the mapping Θb(α) ≡ Kα(b) can be intended as a function of real argument α.

Theorem I proves that, within the domain α∈C0, the function Θb(α) is always well-defined, regardless of the

choice of b. In general, however, the definition of Θb(α) can be extended to a broader domain Cb within which

(V.1) still defines a unique element of R. For example, we have seen in the preceding Section that any sequence of

the type {b01} with finite {b} admits an extension of Θb(α) to any real value of α.



Stan's Library, Volume I, www.ebyte.it/library/Library.html

19

Other types of extensions become possible by relaxing the definition (V.1). For example, one can choose a

particular value x0∈R and define Θ'b(α) ≡ K'(b) = limn→∞ Mn,b(x0), provided that the limit exists. That this is

indeed an extension is evident from the fact that whenever Θb(α) exists, Θ'b(α)exists as well and Θb(α) = Θ'b(α).

The functions Θ'b(α) include as a special case the classical hyperpower function [1] which corresponds to x0 = 1,

b = {1} and converges for any α ≥ -e, though the limit is finite only when -e ≤ α < e
-1

.

VI. Representation of real numbers by means of bips

One of the potential applications of the BK bijection is the representation of real numbers by means of the

binary sequences B(x). The fact that such sequences are composed contain just two elements "0" and "1" makes

them particularly suitable for machine implementation where each element corresponds to a memory bit.

The most important feature of such a representation - just after the essential requirement that B and K be

bijections and inverses of each other (Theorem II) - is the fact that finite sections of B(x) of increasing length

provide a progressively improving approximation to the represented real number x (Lemma 11) and that the

convergence turns out to be quite good as illustrated by the example in Table I.

The resulting binary iterated-powers representation (BIPR) is a conceptually new approach to the problem of

representing real numbers, not just an implementation variation of an existing one. For example, all the

conventional representations such as IEEE 754 [5,6] with fixed or variable-width exponent, logarithmic number

systems [7], level-index [8] and symmetric level-index [8,9] fall into a qualitatively different group based on

variations of what we shall call the power-series representation (PSR or, in its binary version, BPSR).

BIPR is also qualitatively different from representations based on sequences of functions [10], continued

fractions [11] and infinite compositions of linear fractional transformations [12,13]. Compared with such

approaches, BIPR appears to be considerably more intuitive and straightforward (though this does not

automatically imply a superior computational efficiency).

Any real numbers representation should possess a number of properties against which different representations

can be checked and compared. Deferring a detailed discussion of such properties to a forthcoming paper, let us list

here just a few advantages and disadvantages of BIPR with respect to BPSR.

For numbers of reasonable size, say between 10
-100

 to 10
+100

, BIPR is very efficient and requires a number of

bits comparable to the BPSR in its IEEE-754 version. Compared to BPSR, however, BIPR has a staggeringly

wider range. In the neperian base (α=1), a starting segment of the type {1111} brings us close to 10
+148

 and adding

just one more "1" extends that to a value whose decimal exponent has 148 digits. The magnitude of any number

corresponding to a bip with, say, 32 consecutive "1"s is beyond imagination [14,15]. The same applies to the

smallest number representable by a bip of a certain length. According to Lemma 12c, in fact, the inverse of any

bip can be obtained simply by inverting the first element of the binary sequence. Thus, for example, "01111"

encodes a real of the order of 10
-148

.

A BIPR code for real numbers would not need any separate exponent section and, in addition, it would spell a

definitive demise of the concepts of overflow and underflow. In any practical representation the preferred base

would actually be smaller than e since there is hardly any need for such a steep growth of range with the number

of employed bits. The two most attractive choices seem to be β = 2 with a growth rate comparable to that of

Fermat numbers Fn = 1+{1
n
|1}β=2 and α = 4/e

2
 which, according to the hints in Lemma 5, might entail a few

theoretical advantages.
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Among other advantages of BIPR is the simplicity of comparing the size of two numbers (Lemma 13). The

recipe for doing so in BIPR is only marginally less efficient than in pure BPSR and, due to the absence of an

exponent, better than in any practical BPSR implementation, including IEEE-754. Even more striking is the

extreme simplicity of computing the inverse of a number (Lemma 12c), or its logarithm and exponential (Lemma

12a,b) - tasks which in BPSR are anything but trivial.

For what regards basic arithmetic, multiplication and division would become trivial if only we had an efficient

algorithm for BIPR sum and difference. Despite recent attempts [16] to tackle a closely related task, this problem

is at present largely unsolved. The situation contrasts sharply with that of BPSR where addition and subtraction

are very simple, multiplication is moderately difficult and division is rather demanding.

Comparing the advantages and disadvantages of BIPR and BPSR, it is likely that, should someone discover an

efficient algorithm for addition and subtraction in BIPR, the latter might supersede all the presently ubiquitous

PBSR implementations. Regardless of the final outcome, however, the very existence of two distinct real number

representations with dramatically different characteristics of the associated algorithmic machinery is quite

stimulating.

VII. Conclusions

We have proved that, within a range C0 of values of the base β, the bips {Sn(b)|x} converge for every infinite

binary sequence b to a limit which depends only on the sequence b and not on the value of its starting argument x.

Moreover, for a subset B*  of infinite binary sequences, the resulting mapping K:B*→R  turns out to be a

bijection whose inverse B:R→B* is explicitly defined.

While establishing these results, we have derived a number of explicit identities and inequalities for finite bips,

exploiting an ad-hoc notation which simplifies their mathematical treatment. Incidentally, we have also seen that

the bips and their derivatives are computationally easily manageable.

The BK-bijection has a number of interesting properties, some of which have been analyzed. As usual, the

topic opens many more problems than those which it settles. This regards, in particular, the behavior of the K

mapping for various binary sequences b and for base values which lie outside the universal-convergence domain

C0 . There are also categories of related functions which appear to merit further inquiry.

Some of the considerations on the use of the BK-bijection to represent real numbers might eventually lead to

establishing a general real-numbers representation theory. This topic shall be tackled in more detail in a

forthcoming paper.

This study actually started from the observation that it is impossible to reliably compute the result of iterated

applications of the function abs(ln(x)) when the number of required iterations exceeds a certain limit. Computing

the iterated values amounts to estimating the L-progeny sequence (II.5) of x. The L-progeny sequences which one

obtains in practice when using various floating point (FP) implementations start grossly mismatching each other

after a relatively modest number of steps. Thus, for example, comparing standard single-precision and double-

precision values of L
n
(2), the mismatch is total after about 30 steps. Even using the same double-precision IEEE-

754 format but slightly different algorithms (such as the hard-wired Intel FP processor versus an FP emulator), the

mismatch becomes total after about 62 steps.

The reason for this behavior is now quite clear. Since the L-progeny sequence defines the binary sequence

B(x), pretending correct results for an ever increasing number of steps amounts to determining the value of x with

a precision which would eventually exceed the precision we have started with. This being impossible, the L-

progeny sequence members xn and the elements of B(x) must at some point become meaningless. Due to the fact

that the convergence rate of BIPR is only slightly inferior to that of BPSR, this happens after a number of steps

comparable to the number of BPSR bits used to represent the number.
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