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Investigating elementary properties of random selections without displacement from a finite, discrete 
set, one derives identities which can be cast either as a finite probability distribution or as a 
decomposition of nn. They are reported here, together with notes on the original object of this study. 
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Introduction 

This tiny essay started as a reflection on how soon should a random numbers generator repeat a value1. 
This is a classical problem in the art of random number generators [1-4], but here we will pursue a point 
of view which is a bit off-stream. 

Terminology: Let us start with a random mapping R(i)  S of natural numbers i into a set S of n elements 
{s1, s2, …, sn}. The result of an application R(i), henceforth called a “shot”, is one of the elements of S, with 
all of them having the same probability to be “hit”. We will be interested in how many times various 
elements of S were hit after K shots. 

Premises: The only purpose of the argument i of R(i) is to label the i-th shot. Upon every shot an element 
of S gets certainly hit2, but there is no way to know which one, and the outcomes of consecutive shots are 
independent of each other. Hitting an element does not remove it from the set S. We actually implicitly 
assume that each element “remembers” how many times it was hit. 

There are many approximate practical models of this type of processes, such as: 

 Running a discrete random numbers generator (well, deep down, all RNG’s are discrete). 
 Bombing an area that was partitioned into a discrete number of equal squares. 
 Bombardment of a celestial body by meteorites (divide the body surface into finite elements). 
 Winning a raffle round [5] in a group of habitual players (each game representing one shot). 

Since the probability of hitting any particular element is known and equal to 1/n, the most obvious 
queries that arise in this context are of this kind3: 

1. How many shots does it take for the probability of hitting a particular element to exceed 1/2 ? 
2. How many shots does it take, on the average, for half of the elements to get hit? 
3. How many shots it takes before the probability of having hit all elements reaches a certain level. 
4. How many shots is it likely to take before a particular element will be hit twice? 
5. How many shots is it likely to take before some element will be hit twice? 

Most of these are easy questions leading to the binomial statistics [6] with probability p = 1/n. 
After K shots there will be elements of S that were hit j times, with j = 0, 1, 2, ..., K. 
The probabilities a(K,j) of each such outcome are of course the terms in the expansion of (p+(1-p))^K: 

 (p+(1-p))^K =  j=0,K a(K,j) = 1, where a(K,j) = ((n-1)j/nK)C(K,j),   (1) 

C(k,l) being the usual binomial coefficient [7]. 

                                                           
1 Which does not mean that the generator will start repeating the whole sequence, unless it is really primitive. 
2 In processes where “shots” may fail to hit any element, one can resort to the derived conditional variety whereby 
a shot is counted “valid” only after it has resulted in a hit. 
3 Both lists are illustrative, but not at all exhaustive. 
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Note that in this context K is unlimited. Even if it were incomparably larger than n, for example, there 
might still be elements which did not get hit at all (lucky survivors) and, vice versa, it might potentially 
happen that every shot would hit the same element (a bad-luck attractor). All this is interesting but 
conventional and we will not pursue it further in this Note. Let me only point out, for reference purposes, 
that putting K = n in (1), one obtains the following trivial decomposition of nn: 

  j=0,n (n-1)j C(n,j) = nn.        (2) 

What will interest us more are identities that come up when these statistical considerations are combined 
with the pigeonhole principle [8,9].  

 

A reflection on multiple hits 

If, after i shots, no element was hit twice, what is the probability that the next, (i+1)-st, shot will also hit 
an element which was not yet hit. Since there are exactly (n-i) such unscathed elements, the answer is 
(n-i)/n. The statement that prior to the k-th shot, no element was hit twice is equivalent to saying that no 
element was hit twice in any of the shots up to k-th. The probability of this happening is therefore 

  i=0,k-1(n-i)/n = (1/nk)[n!/(n-k)!] = (k!/nk)C(n,k),     (3) 

Note that the shot index i starts formally at 0 (which is inconsequential since the 0-th factor is 1) and 

stops at (k-1), just prior to k. 

Complementing (1), one obtains the cumulative distribution function [10] for the event of hitting some 

element more than once in the k shots: 

 D(n,k) = 1 - (k!/nk)C(n,k).        (4) 

The k in this formula ranges from k=0 with D(n,0) = 0 (no shot, no hit), through 1 with D(n,1)=1 (one 

shot cannot produce multiple hits), up to k=n with D(n,n) = 1 - n!/nn.  

The validity of D(n,k) can be extended to k=n+1 by setting D(n, n+1)=1. The rationale behind this is 

provided by the pigeonhole principle [8]: if the n elements of S get hit a total of (n+1) times, at least one 

element must be hit more than once, so that the probability of that event must be 1. 

The corresponding probability mass function [11] that some element will be hit twice in the shot number 

(j+1), but not before, is then 

 P(n, j) = D(n, j+1) - D(n, j) = (j/n)(j!/nj)C(n, j),      (5) 

for j = 1 through n. Equations (4) and (5) define a discrete probability distribution on the finite set of j  
{1,2,...,n} shots which looks rather novel, since I could not find a category [12] where to put it.  

To understood this distribution properly consider, as a model, a random number generator (RNG) which 

selects randomly one element out of n. Let us run the RNG until it selects an element which was already 

hit before, an event which will certainly happen in at most (n+1) shots. Let’s say it happened in shot 

(j+1), i.e., the last shot which did not lead to any repetition was the j-th. Let us consider this process as a 

single “run” of the RNG, with the number j, 1  j n, being its outcome. Then the probability density (5) 

describes the distribution of the values of j when one repeats the runs for an unlimited number of times. 

It should be now clear why, for n>2, P(n,j) has a maximum. When n is large, the runs when the first 

double-hit occurred very early (after just a few shots) are bound to be very rare. Likewise, runs where 

after close to n shots there was still no double hit will be also extremely rare (it is unlikely that almost 

every element would get hit, but none more than once). 
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The location of the maximum is best estimated by writing P(n, j) in a recursive form, P(n, j+1) = f.P(n, j), 

where f = [(j+1)/j][(n-j)/n]. Clearly, the factor f is decreasing; it starts at 2(n-1)/n which, for n>2, is 

greater than 1, and decreases towards 0. The maximum of P(n,j) therefore occurs just before f crosses 1. 

Setting f = 1 leads to a quadratic equation for j whose solution is 

   2/11n4jmax  .        (6) 

The value of jmax equals approximately n, with a discrepancy smaller than 1 for any n > 2. 

One of the consequences of this is that, for example, a “correctly random” RNG should lead to a duplicate 

hit in about n shots (which turns out to be quite early). The usual efforts to find RNG’s with “as long 
cycles as possible” are therefore unnatural and cause deviations from randomness. 

 

An interesting identity 

The distribution (5) certainly merits to be studied in more detail but that will take another essay. For 

now, let us just notice a direct corollary which looks quite interesting on its own:  

Thanks to the pigeonhole principle, P(n, j) is a true probability density on a discrete set of n elements 

(shots, not those of S), and the sum of all P(n, j), for j = 1 to n, must be 1. Hence 

  j=1,n (j/n)(j!/nj) C(n, j) = 1.        (7) 

Using simple manipulations, this becomes another integer decomposition of nn, 

  j=0,n (nn-j-1)(j)(j!) C(n, j) = nn.        (8) 

Alternatively, it can be also written as an intriguing decomposition of unity: 
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    (9) 

Note: the first term in (9), for j = 1, is simply 1/n, compatibly with the convention that a product over 

zero terms (k = 1 to 0) evaluates to 1. 

Let us compare the nn expansions (2) and (8). Both have the form 

  j=0,n w(n,j)C(n, j) = nn,         (10) 

but the ‘weight’ coefficients w(n, j) are quite different: 

 in (2),   w(n, j) = (n-1)j = b(n, j)       (11) 
 in (8),  w(n, j) = (nn-j-1)(j)(j!) = c(n, j)      (12) 

A numeric example of both for n= 7, j = 0,1,2,...,7, 

 b(7,j) = {1,           6,      36,    216, 1296,  7776, 46656, 279936}, 
 c(7,j) = {0, 16807, 9604, 6174,  4704, 4200,    4320,      5040}, 

reveals, apart from the first element, a much more ‘balanced’ distribution of the values for c(n,j) with 
even a flat minimum in the upper half. A consequence of this is that the values w(n,j)C(n,j) are in identity 
(8) much more peaked around the central values of j, rather than close to the end as in identity (2): 

 b(7,j)C(7,j) = {1,           42,        756,       7560,   45360, 163296, 326592, 279936}, 
 c(7,j)C(7,j) = {0, 117649, 201684, 216090, 164640,    88200,   30240,      5040}. 
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Conclusion 

Analyzing the process of random statistical selection (or ‘shooting’) of elements in a finite set typical, for 
example, of random number generators, we have derived a statistics on the shot number when the first 
multiple hit occurs. This appears to be a novel type of a discrete distribution function. 

It also leads to an interesting identity which can be cast in two ways: either as an integer decomposition 
of the number nn in terms of weighed binomial coefficients C(n,j), or as a rational decomposition of unity. 
The triangular matrices of the nn decomposition (both the integer ‘weights’ and the full terms) were 
registered4 in OEIS [13] (numbers A243202 and A243203).  

The analysis also leads to an insight regarding discrete random number generators on sets with n 
elements. It turns out that trying forcibly to make an RNG exhibit a “cycle” much longer than about n is 
statistically unnatural. Rather, a single-value repetition after about n steps should be allowed, but 
avoiding, obviously, a complete repetition of the subsequent sequence.  
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