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This Note illustrates how even simple mappings often hide a non-intuitive inner richness. The functions 
exp(z) and its inverse log(z), for example, despite their apparent ‘uneventful smoothness’, define two 
denumerable sets of complex constants, namely the fixed points of the exponential mappings exp(z) and 
–exp(z). We analyze these two sets, including algorithms for their computation. 

Keywords: mathematics, mapping, exponential function, logarithmic function, Lambert W function, 
complex numbers, fixed point, invariant, attractor 

[Contents] 

Contents 

Introduction ......................................................................................................................................................... 2 

Relation to the Lambert function W .................................................................................................................... 5 

Asymptotic formulas ........................................................................................................................................... 5 

Attractors of the mappings LK
 and the fixed points of E  .................................................................................. 5 

Numeric evaluation ............................................................................................................................................. 6 

Table II: First 100 fixed points of the mapping exp(z) ......................................................................................... 9 

Table III: First 100 fixed points of the mapping -exp(z) ..................................................................................... 11 

Final remarks ..................................................................................................................................................... 13 

Appendix ............................................................................................................................................................ 14 

OEIS registrations .............................................................................................................................................. 14 

References and Links ......................................................................................................................................... 15 

History of this document ................................................................................................................................... 15 

 
  

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL6Math16.002
http://www.ebyte.it/


 Stan’s Library, Volume VI, Mathematics 

   2 
S. Sykora, Fixed points of exp(z) and –exp(z) in C, DOI: 10.3247/SL6Math16.002 

 

 
 

Introduction 

The exponential [1, 2] mapping1 𝐸(𝑎) 

  𝐸+(𝑎){𝑧} ≡ exp(𝑎𝑧),         (1) 

with 𝑎 being a constant, is certainly among the most ubiquitous ones in natural sciences as well as in 
engineering. One reason for this is the fact that its derivative is proportional to its value. It is therefore 
the simplest possible model for first-order evolution phenomena in which the rate of change of a time-
dependent quantity is proportional to its current value. These include simple growths (expansions, 
explosions, ...), as well as decays (extinctions, relaxations, ...), all of utmost practical importance. 

We do not dwell here on the various definitions of the exponential endomorphism in various domain sets 
such as real and complex numbers [3, 4], nor on their elementary properties which are amply treated in 
most calculus textbooks and other places. This Note addresses just the question of the existence and 
properties of fixed points of 𝐸+(1). Considering that fixed points [5] of any mapping2 are among its most 
notable characteristics, and considering the importance of the exponential function, the interest in the 
set of its invariants appears more than justified. 

In most practical applications, the constant 𝑎 in equation (1) can be normalized to unity by a suitable 
change of scale (domain metric), which is the special case we are going to consider here: 

  𝐸+ ∶    𝐸{𝑧} = exp(𝑧).         (2a) 

We will also consider a closely related endomorphism in C, defined as 

 𝐸− ∶   𝐸−{𝑧} = −exp(𝑧)        (2b) 

or, more compactly, 

 𝐸 ∶   𝐸{𝑧} =  exp(𝑧)         (2c) 

By definition, a fixed point3 𝑧𝑖  of a function maps onto itself, which in our cases means: 

   exp(𝑧𝑖) = 𝑧𝑖 ,          (3) 

It is evident that 𝐸+ has no solution in the domain of real numbers. In the domain C  of complex numbers, 
however, such solutions exist (try, for example, 𝑧1 =0.31813... + i*1.33723...) and we will see that they 
form a denumerable set. 

Using 𝑧̅ to denote the complex conjugate of 𝑧, and considering that, for any z in C, 

  exp(𝑧̅) = exp(𝑧)̅̅ ̅̅ ̅̅ ̅̅ ̅,         (4) 

it is clear that when 𝑧𝑖  satisfies either of the equations (3), so does 𝑧�̅� . All fixed points of 𝐸  in C  therefore 
come in conjugate pairs. We will see that the two conjugate members of each pair are distinct, with the 
exception of a single real-valued invariant of 𝐸−. 

From equations (3) it follows that, for any fixed point of 𝐸± 

  𝑧𝑖 = 𝐿𝑜𝑔( 𝑧𝑖) = 𝑙𝑜𝑔( 𝑧𝑖) + 2𝜋𝐾𝑗,       (5) 

where 𝐿𝑜𝑔(𝑧) is the multivalued logarithmic function [6, 7, 8] in C , 𝑙𝑜𝑔(𝑧) is its main branch, 𝐾 is any 
integer (positive or negative), and 𝑗 is the imaginary unit. 

                                                           
1 In general, 𝑀(𝑝1, 𝑝2, … ){𝑒} denotes the result of the application of an endomorphism 𝑀(𝑝1, 𝑝2, … ) in a set 𝑆 to an 
element 𝑒 ∈ 𝑆. The optional values 𝑝1, 𝑝2, … are parameters specifying 𝑀 in more detail. 
2 Also called invariant points (of a function), invariant elements (of a set), or just invariants (of a mapping). 
3 Throughout this Note, the subscript 𝑖 stands for ‘invariant’ point/value. Other subscripts, such as 𝑘 will be used for 
indexing purposes and assume integer values. 

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL6Math16.002


 Stan’s Library, Volume VI, Mathematics 

   3 
S. Sykora, Fixed points of exp(z) and –exp(z) in C, DOI: 10.3247/SL6Math16.002 

 

 
 

In fact, each of the mappings  

  𝐿𝐾
 = 𝑙𝑜𝑔( 𝑧) + 2𝜋𝐾𝑗         (6) 

is a right inverse of 𝐸. More specifically, we have  

𝐸 𝐿𝐾
  {𝑧} = 𝑧 for any integer 𝐾, while        (7a) 

𝐿𝐾
  𝐸 {𝑧} = 𝑧 + 2𝜋𝐾𝑗.         (7b) 

Let us now see the implications of equations (3). A complex number z can be written as 

 𝑧 = 𝑟. 𝑒𝑥𝑝(𝑖) = 𝑢 + 𝑗𝑣,        (8) 

where  = 𝐴𝑟𝑔(𝑧) + 2𝐾,  with 𝐾 being an integer denoting the complex plane branch index, 

 𝑟 = 𝐴𝑏𝑠(𝑧) = √𝑢2 + 𝑣2,   𝑢 = 𝑅𝑒𝑎𝑙(𝑧) = 𝑟. cos(),  and  𝑣 = 𝐼𝑚𝑎𝑔(𝑧) = 𝑟. sin () 

are real-valued quantities (respectively azimuth, magnitude, real part and imaginary part). 

For fixed points 𝑧𝑖  of 𝐸, the defining equations (3) and (7) give 

 𝑧𝑖   𝑢𝑖 + 𝑗𝑣𝑖 =  exp(𝑢𝑖 + 𝑗𝑣𝑖)  exp(𝑢𝑖) (cos(𝑣𝑖) + 𝑗. 𝑠𝑖𝑛(𝑣𝑖)).   (9) 

This leads to the following constraints on the real-valued components 𝑢𝑖, 𝑣𝑖  of 𝑧𝑖: 

 𝑟𝑖
2 = 𝑢𝑖

2 + 𝑣𝑖
2 = exp(2𝑢𝑖),        (10a) 

 𝑣𝑖 𝑢𝑖⁄ = 𝑠𝑖𝑛(𝑣𝑖) 𝑐𝑜𝑠(𝑣𝑖)⁄ = 𝑡𝑎𝑛(𝑣𝑖),       (10b) 

 𝑠𝑖𝑔𝑛(𝑢𝑖) =  𝑠𝑖𝑔𝑛(𝑐𝑜𝑠(𝑣𝑖)).        (10c) 

Equations (10a, 10b) allow us to formulate two functional constraints on 𝑢𝑖 and 𝑣𝑖, each defining a curve4 
in the Cartesian complex plain (Figure 1): 

 𝑣𝑖
2 = 𝑓(𝑢𝑖),  with the real function 𝑓(𝑢) = exp(2𝑢) − 𝑢2,    (11a) 

 𝑢𝑖 = 𝑔(𝑣𝑖),  with the real function 𝑔(𝑣) = 𝑣 𝑡𝑎𝑛(𝑣)⁄ .     (11b) 

Since 𝑣𝑖 is real, the expression under the square root in equation (11a) must be non-negative, implying 
𝑢𝑖 > −𝑊(1)  − 0.56714… (OEIS [9] A030178 [10]), with W(x) denoting the Lambert W function [11, 
12]. The fact that 𝑣𝑖 appears in (11a) as a square underlines the already established fact that when 𝑧𝑖is 
an fixed point of either of the two mappings, so is also its complex conjugate. Hence, when 𝑢𝑖 > 0, when 
taking the square root of 𝑓(𝑢𝑖) both signs are admissible. 

Any fixed point of 𝐸 with nonzero 𝑣𝑖 must satisfy both (11a) and (11b). It is evident from Figure 1 that 
there indeed exists a denumerable set of pairs (𝑢𝑖, 𝑣𝑖) which meet these conditions. For a full 
characterization, however, the constraint (10c) must be also taken into account. When 𝑣𝑖is non-zero then 
𝑢𝑖 must be positive, and (10c) implies that, for the fixed points of 𝐸, we require  cos(𝑣𝑖) > 0. 
Consequently, for 𝐸+, 𝑣𝑖 must lie in one of the intervals (2𝑘 −  2⁄ , 2𝑘 +  2⁄ ). As illustrated in Figure 
1 (green dots), this eliminates half of the intersections between the functions 𝑓(𝑢) and 𝑔(𝑣). The 
remaining intersections (red dots) are those with 𝑣𝑖 in an interval (2𝑘 +  2⁄ , 2𝑘 + 3 2⁄ ) and mark 
the fixed points of 𝐸−. 

There remains the special case when 𝑣𝑖 = 0 in which (10b) is satisfied trivially and (11b) does not apply, 
(10a) implies a negative 𝑢𝑖 = −𝑊(1), and (10c) indicates that it is an fixed point of 𝐸− only (in Figure 1, 
the red dot marked as 𝑧0). 

                                                           
4 It may appear a bit unusual that for the first curve v is a function of u, while for the second one the two variables are 
interchanged. However, one can easily redefine the curves by means of a parameter t and the pair of equations [u(t)=t, 
v(t)=f(t)] for the first case, and [u(t)=t/tan(t), v(t)=t] for the second one. 
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Figure 1: Fixed points of 𝑬+ (green dots) and 𝑬− (red dots) 

This graph displays the conventional Cartesian complex plane reflected about its diagonal, so 
that the real and imaginary axes are interchanged. The blue lines illustrate the curve 𝑢 =
𝑣/tan(𝑣) which has a singularity at every nonzero multiple of , marked by a blue vertical line, 
and a zero at every half-integer multiple of . The tiny blue dots are 𝑔(𝑣) points computed at 
regular intervals of 𝑣 and displayed as a visual aide. The brown line illustrates the curve 𝑣𝑖

2 =
exp(2𝑢𝑖) − 𝑢𝑖

2. Its value at 𝑣 = 0 is 𝑢 = −𝑊(1), corresponding to the only real-valued fixed 
point. All other fixed points of the two mappings correspond to the intersections between the 
two curves. There is an alternation between the fixed points of 𝐸+(green dots, odd indices) and 
those of 𝐸−(red dots, even indices). For more details, see the text. 
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We can now summarize the above analysis as follows: 

The mappings 𝐸 have in C  a denumerable set of fixed points denoted as 𝑧𝑘 , 𝑘 = ⋯− 2,−1, 0, 1 , 2…, with 
odd indexes marking the fixed points of 𝐸+ and even indexes those of 𝐸−. For any k, the values 𝑧𝑘 , 𝑧−𝑘 
form a conjugate pair with distinct members, with the only exception of 𝑧𝑘 which is real.  

It is interesting to note how the branch index 𝐾 kind of ‘fades out of view’ once we get to the invariants 
of the mappings 𝐸+ or 𝐸−. The solutions of the equation 𝑒𝑥𝑝(𝑧) = 𝑧, for example, have all the same status 
because the function 𝑒𝑥𝑝(𝑧) has no branches; only its right inverse 𝑙𝑜𝑔(𝑧) has them. The branch indices 
play a background role which, however, is important because it permits a neat organization and 
classification of all the solutions. 

 

Relation to the Lambert function W 

Rewriting equation (3) as  −( 1) = −𝑧𝑖 exp(−𝑧𝑖) , it is evident that the invariant elements are negated 
values of the multi-valued, complex Lambert 𝑊(𝑧) function [11] at 𝑧 = −1 (for 𝐸+) and 𝑧 = +1 (for 𝐸−). 

By definition,  𝑊(𝑢) satisfies 𝑊(𝑢)𝑒𝑥𝑝(𝑊(𝑢)) = 𝑢. Taking a logarithm and re-arranging a bit, we get 

−𝑊(𝑢) = 𝑙𝑜𝑔(𝑊(𝑢) 𝑢⁄ ) + 2𝜋𝑙𝑗, with 𝑙 being a generic integer yet to be defined5. Setting 𝑢 = −1 and 
𝑊(−1) ≡ −𝑧𝑘, we recognize equation (5) for fixed points of 𝐸+ (with odd index 𝑘). Similarly, setting 𝑢 =
1 and 𝑊(1) ≡ 𝑧𝑘, we recognize equation (5) for fixed points of 𝐸− (with even 𝑘). All these findings can 
be expressed in a compact way, valid for any index k, as 

 𝑧𝑘 = −𝑊𝐿((−1)
𝑘), 𝐿 = −𝑓𝑙𝑜𝑜𝑟((𝑘 + 1)/2),      (12) 

where 𝑊𝐿(𝑧) denotes the 𝐿-th branch of 𝑊(𝑧). The chosen value of 𝐿 is the one which guarantees a match 
between our fixed points numbering and the conventional indexing of the branches of Lambert W. 

 

Asymptotic formulas 

It is evident from Figure 1 that when 𝑧𝑘 = 𝑢𝑘 + 𝑗𝑣𝑘 and 𝑘 > 0 then, first of all, 

 (𝑘 − 1)    𝑣𝑘     (𝑘 − 1 2⁄ )        (13) 

More precisely, when 𝑘 → ∞, the value of 𝑣𝑘 tends to the upper border of the above interval: 

 𝑣𝑘
𝑘→∞
→   (𝑘 − 1 2⁄ )         (14) 

Once the behavior of 𝑣𝑘 is known, that of 𝑢𝑘 can be deduced from equation (11a). Considering that 𝑢𝑘 
tends towards infinity, the term exp(2𝑢) in the function 𝑓(𝑢) becomes soon dominant, so that 

 𝑢𝑘
𝑘→∞
→   𝑙𝑜𝑔(𝑣𝑘)

𝑘→∞
→   𝑙𝑜𝑔((𝑘 − 1 2⁄ ))       (15) 

The convergence is very fast. For 𝑘 = 11, for example, the ratio 𝑙𝑜𝑔((𝑘 − 1 2⁄ )) 𝑢𝑘⁄  is 0.99931..., in error 

by less than 0.0007.  

 

Attractors of the mappings LK
 and the fixed points of E  

A fixed point 𝑧𝑖  of a mapping may (but need not) be its attractor [5], meaning that, starting from any point 
of an attraction basin, and applying the mapping iteratively, the consecutive images converge to 𝑧𝑖 . 
However, this does not help us much in the case of the mapping 𝐸+ because it does not have in C  any 

                                                           
5 Its presence, however, justifies to use of main-branch logarithm rather than the more generic multi-valued one. 
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attractor at all. One can see this empirically, trying to start at any randomly chosen point 𝑧 in C  and 
applying to it iteratively the function 𝑒𝑥𝑝(𝑧). The result is that, after a few steps, the consecutive images 
start diverging, giving rise to an overflow. It is not difficult to prove that for 𝐸+ this behavior is universal, 
but for the purposes of this Note, a simple statement of the empirically verifiable fact is sufficient. 

The mapping 𝐸− has in C one attractor which is the fixed point 𝑧0 (the fixed points 𝑧2𝑘 of 𝐸− with nonzero 
𝑘 are not attractors of 𝐸− as, again, one can easily ascertain empirically). The convergence of the sequence 
of consecutive images to 𝑧0 upon iterated repetitions of 𝐸− is not very fast. The distance to 𝑧0 drops 
exponentially with a factor which has a limit of about 0.567... (curiously, it appears to converge to |𝑧0|). 
Depending on the choice of the initial point 𝑧𝑖𝑛𝑖 , the progression may start with a few apparently erratic 
looking steps before it settles into a smooth approach towards the attractor. For 𝑧𝑖𝑛𝑖 settings with large 
real values one may run into numerical overflow or underflow problems but those do not mean that the 
iterations would not eventually converge if sufficiently large precision were available. 

Given any mapping 𝑀 with a right inverse 𝑀𝑟
−1, it is evident from definitions that any invariant of the 

latter is also an invariant of the former. Moreover, should 𝑀𝑟
−1 have an attractor, the attractor would be 

necessarily its fixed point, and therefore an invariant of 𝑀. In practice it often happens that, when 𝑀 has 
an fixed point which is not an attractor, then the same value is an attractor of one of its right inverses. 

Applied to our case, we see from equation (7a) that, for any 𝐾, 𝐿𝐾
  is a right inverse of 𝐸. Therefore, 

should 𝐿𝐾
 have in C  an attractor, the latter would be necessarily a fixed point of 𝐸. Extensive empirical 

tests6 show that, in fact, the following is true: 

For any non-zero integer 𝐾, each of the mappings 𝐿𝐾
+  and 𝐿𝐾

−  has in C  a unique attractor whose attraction 
region is the whole of C . The attractors of 𝐿𝐾

−  match our fixed points 𝑧2𝐾, those of 𝐿𝐾
+  match 𝑧2𝐾+1 for 

positive 𝐾, and 𝑧−(2𝐾+1) for negative 𝐾. 

Moreover, the mapping 𝐿0
+ has in C  two mutually conjugate attractors matching our 𝑧1 and 𝑧−1 whose 

attraction regions are, respectively, the upper and lower parts of the complex plane. Since 𝑙𝑜𝑔(0) is 
undefined, however, one must avoid as starting points 𝑧𝑖𝑛𝑖 = 0 and all those real 𝑧𝑖𝑛𝑖 values which would 
end up at 𝑧 = 0 upon a repetitive application of 𝐿0

+, which are  

 0, 1, e, e^e, e^e^e, ...         (16) 

Finally, considering that, as discussed above, the mapping 𝐸− has in C  an attractor, it is not surprising 
that 𝐿0

− does not have any.  

 

Numeric evaluation 

Armed with the knowledge of the attractors gained in the previous Section, it is now easy to code software 
functions for numeric evaluation of the fixed points. We do it using the free PARI/GP software [13] 
because it is simple, allows arbitrary precision, has intrinsically implemented unlimited-precision 
exponential and logarithmic functions, and is free. However, the code snippets listed below are properly 
commented to make clear the algorithm(s) which are anyway simple and easily portable to other 
programming languages. 

The PARI functions listed in the box on the following page can be used to compute the value of any of the 
fixed points discussed above. Prior to calling these functions, one must set a desired default precision of 
the calculations and the global variable Eps_ used to interrupt the iterations. For example, to generate the 

                                                           
6 A rigorous proof of the statement is relatively easy. In the context of this Note, however, I consider satisfactory extensive 
empirical tests which were carried out for various starting points over an a square region covering the interval of [-10,+10] 
on both real and imaginary axes, with a step of 0.1. The proof will be given for a more general situation, to be discussed 
in another document. 
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Tables in the next Section, we have configured the PARI/GP system to 20 digits precision by executing 
the following commands: 

 
default(realprecision,20) 

Eps_= 5*10.0^(-default(realprecision)) 

There are two functions, ExpzEQz(K) to compute an invariant of 𝐸+ (namely, the solution of the equation 
𝑒𝑥𝑝(𝑧) = 𝑧 corresponding to the K-th branch of 𝑙𝑜𝑔(𝑧)), and ExpzEQmz(K) to compute an invariant of 
𝐸−(namely, the solution of 𝑒𝑥𝑝(𝑧) = −𝑧 for the same branch of 𝑙𝑜𝑔(𝑧)). 

 

ExpzEQz(K,sgn=1) = { 
/* ------------------------------------------------------- 

Solves for exp(z)= z in the K-th branch of log(z). 

Set the optional second argument to -1 to select the 

solution with negative imaginary part in case of K=0 

(it has no effect when K is nonzero).  

Prior to calling this function, make sure that the 

Global variable Eps_ is set to the desired precision, 

compatibly with default(realprecision). 

------------------------------------------------------- */ 

  my(z=1+sgn*I,zlast=z,ncyc=1); \\ z_ini is set to 1+I 

  while(ncyc, \\ The cycle will be terminated by a 'break' 

    z=log(zlast)+2*Pi*K*I; \\ Apply the mapping (L+)_K 

    if(abs(z-zlast)<Eps_,break); \\ Test for termination 

    zlast=z;ncyc++); \\ Proceed to next iteration 

  \\ Uncomment next two lines to play with convergence rate 

  \\ print("Cycles: ",ncyc); 

  \\ print("Convergence factor per cycle: ",Eps_^(1.0/ncyc)); 

  return(z); 

} 

 

ExpzEQmz(K) = { 
/* ------------------------------------------------------- 

Solves for exp(z)= -z in the K-th branch of log(z). 

Prior to calling this function, make sure that the 

Global variable Eps_ is set to the desired precision, 

compatibly with default(realprecision). 

------------------------------------------------------- */ 

  my(z=-1.0,zlast=z,ncyc=1); \\ z_ini is set to -1 

  while(ncyc, \\ The cycle will be terminated by a 'break' 

    if(K,z=log(-z)+2*Pi*K*I, \\ K!=0: apply mapping (L-)_K 

       z=-exp(z)); \\ K==0: apply -exp(z) 

    if(abs(z-zlast)<Eps_,break); \\ Test for termination 

    zlast=z;ncyc++); \\ Proceed to next iteration 

  \\ Uncomment next two lines to play with convergence rate 

  \\ print("Cycles: ",ncyc); 

  \\ print("Convergence factor per cycle: ",Eps_^(1.0/ncyc)); 

  return(z); 

} 

 

Computational performance: 

Both functions use a simple iterative procedure to approach the desired attractor – and fixed point - with 

the specified precision. As is usual in algorithms of this type, the convergence, after a few atypical points, 
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is exponential in the sense that the distance of the current value from the attractor drops by an 

approximately constant factor c < 1 in every iteration. Algorithms of this type are usually classified as 

‘efficient’, even though it is the slowest convergence type to which the label can be applied. 

One can easily experiment with the above code and, in particular, find out the number of steps required 

to reach a given precision and/or the value of the convergence factor c. It turns out that these features 

depend relatively little on the choice of the initial value 𝑧𝑖𝑛𝑖 and they differ somewhat (not too much) 

between the two mappings. They are strongly dependent, however, on the branch index 𝐾, with the 

efficiency increasing sharply with increasing absolute value of the branch index (see Table I). 

Table I: Selected convergence data obtained with 100 digits precision 

The rounded c values are averages over the whole runs. 

K Default 𝒛𝒊𝒏𝒊 𝒛𝒊𝒏𝒊 = 𝟏𝟐𝟑𝟒 + 𝟒𝟑𝟐𝟏𝒋 

 ExpzEQz ExpzEQmz ExpzEQz ExpzEQmz 

 Cycles c factor Cycles c factor Cycles Cycles 
       

0 832 0.72802 466 0.56737 838 overflow 

1 131 0.13318 176 0.22300 132 176 

2 102 0.07508 113 0.09660 102 113 

4 83 0.04150 86 0.04638 83 87 

8 69 0.02176 70 0.02298 69 71 

16 59 0.01137 60 0.01226 59 60 

32 52 0.00622 52 0.00622 52 52 

64 46 0.00321 46 0.00321 46 46 

 

One might think that a more realistic initial estimate for 𝑧𝑖𝑛𝑖 would reduce the number of required cycles. 

It does, but not much, the performance boost is not significant. Typically, one can save four cycles for very 

low 𝐾 and not more than one, or even none, for 𝐾 values exceeding 3 or so. For the present purposes, 

therefore, a better 𝑧𝑖𝑛𝑖 estimate is irrelevant. 

The convergence can be improved using various ‘tricks’. For example, replacing the mapping 𝐿0
+ = 𝑙𝑜𝑔( 𝑧) 

with (𝑧 + 3 ∗ 𝑙𝑜𝑔( 𝑧))/4 drops the 𝑐 factor for ExpzEQz(0) from 0.728 to 0.651, and the number of cycles 
from 832 to 616 (for the 100-digits precision). However, the same modification is counterproductive for 
|𝐾| = 1 and, increasingly so, for all higher values of 𝐾. 

More powerful attractor convergence-acceleration methods exist but they are beyond the scope and 
focus of this investigation. Knowing that we can compute any of the fixed points to any desired precision 
within a few seconds7 is more than sufficient in the present context. 

 

  

                                                           
7 On my (slow) PC, evaluating 𝑧1 to 1000 digits (using the unmodified algorithm) takes about 7 seconds, and substantially 
less for the higher invariants. Any evaluation with 20-digits precision takes at most a fraction of a millisecond. 
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Table II: First 100 fixed points of the mapping exp(z) 

All these 𝑧𝑘values with odd 𝑘 are solutions of the equation 𝑒𝑥𝑝(𝑧) = 𝑧, and values 𝑊𝐾(−1) of the 
Lambert W function in its 𝐾-th branch. These properties are shared also by their complex conjugates 
corresponding to negated values of 𝑘 and 𝐾 (hence, the Table covers 200 fixed points). The values are 
rounded to 20 significant digits. 

 

K k Real part of 𝒛𝒌 Imaginary part of 𝒛𝒌 Modulus (abs. value) 
0 1 0.3181315052047641353 1.3372357014306894089 1.3745570107437074865 

1 3 2.0622777295982838850 7.5886311784725126226 7.8638611760942326688 

2 5 2.6531919740386972866 13.949208334533214455 14.199290151670056423 

3 7 3.0202397081645011514 20.272457641615221810 20.496204202872711234 

4 9 3.2877686115440937515 26.580471499359145698 26.783033576712299097 

5 11 3.4985152121541032651 32.880721480068912759 33.066319023131964923 

6 13 3.6724500687098179322 39.176440021735248576 39.348193634318031682 

7 15 3.8205543078136768665 45.469265403710858577 45.629494097261815144 

8 17 3.9495227424225290276 51.760122004020700577 51.910586201313703517 

9 19 4.0637417027918296891 58.049573434477498900 58.191640057243662522 

10 21 4.1662424475284168612 64.337984120359044986 64.472736693917066956 

11 23 4.2592078559390358387 70.625600802137234815 70.753913956917891655 

12 25 4.3442623028349102442 76.912596859781745855 77.035187873277373807 

13 27 4.4226473672790146136 83.199097908843236152 83.316563194724870684 

14 29 4.4953334317186493053 89.485197323844476396 89.598038833167046103 

15 31 4.5630933498256177846 95.770966045047388159 95.879610752864670458 

16 33 4.6265526777907663625 102.05645899156936319 102.16127354128986205 

17 35 4.6862248854570079366 108.34171938138198275 108.44302127011768619 

18 37 4.7425366350665273407 114.62678171714661533 114.72484796488215741 

19 39 4.7958463114371479629 120.91167389694539266 121.00674785483738111 

20 41 4.8464578566848846867 127.19641873639019421 127.28871549795660145 

21 43 4.8946312688228741701 133.48103508588498562 133.57074583477101020 

22 45 4.9405906854558158013 139.76553866384870535 139.85283420194601160 

23 47 4.9845306899927294777 146.04994268706757471 146.13497632358655411 

24 49 5.0266212897345808108 152.33425835379593357 152.41716829081774774 

25 51 5.0670118879905553236 158.61849521840106895 158.69940653582470276 

26 53 5.1058344847351415135 164.90266148505363712 164.98168780394902598 

27 55 5.1432062789111839778 171.18676424024908290 171.26400912589327096 

28 57 5.1792318017940729570 177.47080963858814112 177.54636779115675430 

29 59 5.2140046793078506666 183.75480305246963217 183.82876132326994226 

30 61 5.2476090981418515602 190.03874919365249244 190.11118745706381227 

31 63 5.2801210334721515443 196.32265221269375744 196.39364411801728192 

32 65 5.3116092833443259707 202.60651578084207299 202.67612940361654139 

33 67 5.3421363451414094768 208.89034315791056874 208.95864156660215897 

34 69 5.3717591622123910223 215.17413724886400359 215.24117899995292545 

35 71 5.4005297630802567021 221.45790065125995818 221.52374022344702525 

36 73 5.4284958112583310149 227.74163569523091469 227.80632387164348681 

37 75 5.4557010802693059180 234.02534447734647888 234.08892868313515300 

38 77 5.4821858657549232642 240.30902888942616813 240.37155349093566094 

39 79 5.5079873444166780900 246.59269064316373370 246.65419721387533102 

40 81 5.5331398878125835450 252.87633129125965415 252.93685884889337171 

41 83 5.5576753376564941299 259.15995224562865855 259.21953746412580544 

42 85 5.5816232481521108739 265.44355479314600886 265.50223219269968996 

43 87 5.6050110999879676582 271.72714010931383374 271.78494222715440780 

44 89 5.6278644898795157909 278.01070927016253876 278.06766681441998568 

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL6Math16.002


 Stan’s Library, Volume VI, Mathematics 

   10 
S. Sykora, Fixed points of exp(z) and –exp(z) in C, DOI: 10.3247/SL6Math16.002 

 

 
 

45 91 5.6502072989365675449 284.29426326264876516 284.35040525129061150 

46 93 5.6720618426327954479 290.57780299376787101 290.63315688033879808 

47 95 5.6934490047382487703 296.86132929856340620 296.91592108622207589 

48 97 5.7143883572297640684 303.14484294718694227 303.19869729233976360 

49 99 5.7348982679048538539 309.42834465113764351 309.48148495780234641 

50 101 5.7549959971818823835 315.71183506879113748 315.76428357468036632 

51 103 5.7746977853648307282 321.99531481031077776 322.04709266550356607 

52 105 5.7940189314780593586 328.27878444202066622 328.32991178098439584 

53 107 5.8129738646298018831 334.56224449030831749 334.61274049794294597 

54 109 5.8315762087382781832 340.84569544511520531 340.89557841741296268 

55 111 5.8498388413477107527 347.12913776306530511 347.17842516291088157 

56 113 5.8677739471702199474 353.41257187027487876 353.46128037885181647 

57 115 5.8853930669111363430 359.69599816488092296 359.74414372909820305 

58 117 5.9027071418676957738 365.97941701932074828 366.02701489562834901 

59 119 5.9197265547327105752 372.26282878239092930 372.30989357731351068 

60 121 5.9364611669842532857 378.54623378111025031 378.59277948879332434 

61 123 5.9529203531984889287 384.82963232240816926 384.87567235944048843 

62 125 5.9691130325845787667 391.11302469465765445 391.15857193240653729 

63 127 5.9850476980072365210 397.39641116906894784 397.44147796374138499 

64 129 6.0007324427333598115 403.67979200095882009 403.72439022158006011 

65 131 6.0161749851136035185 409.96316743090815901 410.00730848539071251 

66 133 6.0313826913873148771 416.24653768581923681 416.29023254527855980 

67 135 6.0463625967794932027 422.52990297988269820 422.57316220134096432 

68 137 6.0611214250410129013 428.81326351546317559 428.85609726306929706 

69 139 6.0756656065679515036 435.09661948391144383 435.13903754879366162 

70 141 6.0900012952222333118 441.37997106631015708 441.42198288516692302 

71 143 6.1041343839637092534 447.66331843415944641 447.70493310668481938 

72 145 6.1180705193930514150 453.94666175000798563 453.98788805523923308 

73 147 6.1318151152952797313 460.23000116803454094 460.27084757970196540 

74 149 6.1453733652652143244 466.51333683458449792 466.55381153553659977 

75 151 6.1587502544885351661 472.79666888866539806 472.83677978443625481 

76 153 6.1719505707453227152 479.07999746240510787 479.11975219398522321 

77 155 6.1849789146968547119 485.36332268147588124 485.40272863734266848 

78 157 6.1978397095109632647 491.64664466548725340 491.68570899294670969 

79 159 6.2105372098763410461 497.92996352835041822 497.96869314423736800 

80 161 6.2230755104517631140 504.21327937861648478 504.25168097939697812 

81 163 6.2354585537922066422 510.49659231979078146 510.53467239110678513 

82 165 6.2476901377902564721 516.77990245062517144 516.81766727631855378 

83 167 6.2597739226679374667 523.06320986539016125 523.10066553604011338 

84 169 6.2717134375511778494 529.34651465412842044 529.38366707513384954 

85 171 6.2835120866564480887 535.62981690289118334 535.66667180212723338 

86 173 6.2951731551167083801 541.91311669395887211 541.94967962903455162 

87 175 6.3066998144716086202 548.19641410604716135 548.23269047118906677 

88 177 6.3180951278448951759 554.47970921449959770 554.51570424708489718 

89 179 6.3293620548301684816 560.76300209146779100 560.79872087822796150 

90 181 6.3405034561044865714 567.04629280608010672 567.08174028899538243 

91 183 6.3515220977878060704 573.32958142459971014 573.36476240650279067 

92 185 6.3624206555648796759 579.61286801057274181 579.64778716047901173 

93 187 6.3732017185849750345 585.89615262496733851 585.93081448314765722 

94 189 6.3838677931536328039 592.17943532630415590 592.21384430911517715 

95 191 6.3944213062296314142 598.46271617077899508 598.49687657526496230 

96 193 6.4048646087393635138 604.74599521237808738 604.77991122065711569 

97 195 6.4151999787199461308 611.02927250298654704 611.06294818643353904 

98 197 6.4254296243015758888 617.31254809249046163 617.34598741572800585 

99 199 6.4355556865388955847 623.59582202887305318 623.62902885358091530 
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Table III: First 100 fixed points of the mapping -exp(z) 

All these 𝑧𝑘values with even 𝑘 are solutions of the equation 𝑒𝑥𝑝(𝑧) = −𝑧, and values 𝑊𝐾(1) of the 
Lambert W function in its 𝐾-th branch. These properties are shared also by their complex conjugates 
corresponding to negated values of 𝑘 and 𝐾. The values are rounded to 20 significant digits. 

 

K k Real part of 𝒛𝒌 Imaginary part of 𝒛𝒌 Modulus (abs. value) 
0 0 -.5671432904097838730 0.0 0.56714329040978387300 

1 2 1.5339133197935745079 4.3751851530618983855 4.6362846327866251895 

2 4 2.4015851048680028842 10.776299516115070898 11.040663126685179665 

3 6 2.8535817554090378072 17.113535539412145913 17.349813471433227303 

4 8 3.1629527388040840093 23.427747503755212819 23.640296595593230026 

5 10 3.3986921967647194819 29.731310707828526210 29.924938513784595158 

6 12 3.5892625245295749005 36.029021703427674892 36.207364035180120433 

7 14 3.7492425412169807420 42.323145361236994865 42.488886228062835869 

8 16 3.8871164495491617985 48.614898564936282096 48.770052663201005218 

9 18 4.0082620531092576890 54.904997123349749065 55.051111467448501113 

10 20 4.1163046640017699831 61.193891331956510477 61.332179974579289957 

11 22 4.2138049147167743704 67.481879520015322941 67.613313891667480627 

12 24 4.3026389193033564509 73.769167656040994602 73.894538352539890299 

13 26 4.3842225073788582586 80.055902804540732194 80.175862831928912352 

14 28 4.4596505195112867401 86.342192948825070346 86.457288680413260959 

15 30 4.5297870804820397976 92.628119271810462660 92.738813076441984604 

16 32 4.5953262041331040497 98.913744054924693970 99.020431153805539279 

17 34 4.6568337148901730335 105.19911592355408442 105.30213716418821256 

18 36 4.7147769993763328246 111.48427342777463854 111.58392511411608544 

19 38 4.7695465967269711403 117.76924754616840906 117.86578910917723828 

20 40 4.8214721753602549192 124.05406347404712454 124.14772353273613724 

21 42 4.8708345616349407896 130.33874192479432236 130.42972313036992191 

22 44 4.9178749363625923611 136.62330009289826365 136.71178304068686994 

23 46 4.9628019635879969342 142.90775237744401410 142.99389879607677913 

24 48 5.0057973856476142074 149.19211093309842126 149.27606630716158435 

25 50 5.0470204642215697094 155.47638609494158672 155.55828183902526276 

26 52 5.0866115417413472166 161.76058670974591975 161.84054198394728735 

27 54 5.1246949243013037730 168.04472039698825060 168.12284363336565493 

28 56 5.1613812355204892332 174.32879375646336395 174.40518395059799069 

29 58 5.1967693537516344162 180.61281253487824132 180.68756034513046397 

30 60 5.2309480181242990694 186.89678176062119523 186.96997044885466315 

31 62 5.2639971691199272642 193.18070585361043732 193.25241209437894229 

32 64 5.2959890746558078217 199.46458871546065663 199.53488329539461357 

33 66 5.3269892815873713487 205.74843380398031330 205.81738222899691626 

34 68 5.3570574241345213790 212.03224419510083221 212.09990721982021968 

35 70 5.3862479142974862234 218.31602263465445024 218.38245672583049377 

36 72 5.4146105343494619033 224.59977158189883753 224.66502932561582984 

37 74 5.4421909476139879136 230.88349324629023289 230.94762370702158671 

38 76 5.4690311406889710131 237.16718961870144044 237.23023865698679099 

39 78 5.4951698078704236249 243.45086249804395310 243.51287305245042078 

40 80 5.5206426866111739794 249.73451351406809815 249.79552585220876007 

41 82 5.5454828513132150239 256.01814414696918045 256.07819608961731863 

42 84 5.5697209715137988182 262.30175574431199743 262.36088286604242282 

43 86 5.5933855395213576190 268.58534953569396135 268.64358534497827657 

44 88 5.6165030717390311774 274.86892664549320378 274.92630274675498519 

45 90 5.6390982872432236983 281.15248810398850364 281.20903434377172676 

46 92 5.6611942666327753584 287.43603485708964603 287.49177945619699026 
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47 94 5.6828125937079478494 293.71956777487754442 293.77453744808464749 

48 96 5.7039734821593086487 300.00308765912132896 300.05730772386066454 

49 98 5.7246958891303409298 306.28659524991320002 306.34008972514057330 

50 100 5.7449976172527183817 312.57009123154005419 312.62288292784249110 

51 102 5.7648954065304659987 318.85357623769282991 318.90568683956457433 

52 104 5.7844050172612737544 325.13705085609949437 325.18850099719938643 

53 106 5.8035413050240519794 331.42051563265504320 331.47132496476081475 

54 108 5.8223182886265517530 337.70397107511136602 337.75415833140193830 

55 110 5.8407492117915537339 343.98741765638098264 344.03700070960467938 

56 112 5.8588465992615056463 350.27085581750118728 350.31985173352420714 

57 114 5.8766223079168907406 356.55428597029881566 356.60271105747293981 

58 116 5.8940875734308322227 362.83770849979048016 362.88557835453064558 

59 118 5.9112530529196556200 369.12112376634854333 369.16845331526859946 

60 120 5.9281288639948243096 375.40453210765919274 375.45133564657703892 

61 122 5.9447246205745668674 381.68793384049563150 381.73422507058629691 

62 124 5.9610494657725691389 387.97132926232652352 388.01712132367299499 

63 126 5.9771121021454197615 394.25471865277735527 394.30002415554356887 

64 128 5.9929208195493266585 400.53810227496023775 400.58293332838818703 

65 130 6.0084835208293316624 406.82148037668582148 406.86584861609882305 

66 132 6.0238077455403056572 413.10485319156939181 413.14876980354586468 

67 134 6.0389006918779530029 419.38822094004181594 419.43169668590819643 

68 136 6.0537692369795046333 425.67158383027479650 425.71462906805218573 

69 138 6.0684199557374038951 431.95494205902882452 431.99756676395544359 

70 140 6.0828591382548054051 438.23829581243129499 438.28050959617162366 

71 142 6.0970928060588726256 444.52164526669143316 444.56345739533287587 

72 144 6.1111267271764662043 450.80499058875796414 450.84640999968688579 

73 146 6.1249664301666829046 457.08833193692482778 457.12936725466571394 

74 148 6.1386172171956792069 463.37166946138968546 463.41232901248390249 

75 150 6.1520841762311602720 469.65500330476947457 469.69529513176354566 

76 152 6.1653721924267176519 475.93833360257683212 475.97826547718422472 

77 154 6.1784859587597568663 482.22166048366082387 482.26123991915589404 

78 156 6.1914299859809807831 488.50498407061507394 488.54421833351297126 

79 158 6.2042086119282099270 494.78830448015608563 494.82720060122803532 

80 160 6.2168260102526593603 501.07162182347427368 501.11018660814367245 

81 162 6.2292861986015949348 507.35493620655998689 507.39317624472113333 

82 164 6.2415930462975080609 513.63824773050658429 513.67616940580457659 

83 166 6.2537502815505324494 519.92155649179243510 519.95916599039977476 

84 168 6.2657614982377388000 526.20486258254354013 526.24216590146625104 

85 170 6.2776301622801490603 532.48816609077831721 532.52516904572189881 

86 172 6.2893596176457797309 538.77146710063595389 538.80817533345921151 

87 174 6.3009530920047263843 545.05476569258960570 545.09118467837232026 

88 176 6.3124137020602148725 551.33806194364560536 551.37419699739409922 

89 178 6.3237444585776471489 557.62135592752974670 557.65721221054265647 

90 180 6.3349482711319421499 563.90464771486161541 563.94023024077658089 

91 182 6.3460279525918978136 570.18793737331785561 570.22325101385836310 

92 184 6.3569862233588639544 576.47122496778518647 576.50627445822545302 

93 186 6.3678257153757039076 582.75451056050391490 582.78930050486845650 

94 188 6.3785489759208235752 589.03779421120262882 589.07232908721601042 

95 190 6.3891584712009490132 595.32107597722469961 595.35536014102590944 

96 192 6.3996565897553283716 601.60435591364717136 601.63839360428208886 

97 194 6.4100456456831122258 607.88763407339256846 607.92142941709709615 

98 196 6.4203278817048203786 614.17091050733411083 614.20446752161971035 

99 198 6.4305054720680261337 620.45418526439478775 620.48750786194739232 
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Final remarks 

We have analyzed the structure and some of the properties of the denumerable set of points in C  which 
are mapped onto themselves under the exponential mappings ±𝑒𝑥𝑝(𝑧). It turns out that the separate 
denumerable sets of fixed points of the two mappings are closely related and, to classify them and get a 
clear view of their relationships, it is best to study them together as a single construct. 

By-products of the analysis: 

- We will explored in more detail elsewhere the numerical evaluation of the Lambert WK function in all 
its branches (indexed by the integer K). The fixed points which were discussed here regard only the 
values 𝑊𝐾(±1), but a generalization to any other value is easy to envisage. 

- The fixed points 𝑧𝑘  are simple poles of the following functions 

For odd k, 𝑠(𝑧) = 1 (𝑒𝑥𝑝(𝑧) − 𝑧)⁄         (17a) 

For even k 𝑡(𝑧) = 1 (𝑒𝑥𝑝(𝑧) + 𝑧)⁄ .       (17b) 

The first of these is particularly interesting since it has no singularity on the real axis, nor on the 
imaginary axis. When considered as a real function of real variable, it looks as a peak with a maximum at 
the origin, an asymptotically exponential decay for positive arguments, and an asymptotic decay of the 
1 𝑥⁄  type for negative arguments. The convergence radius of its Taylor expansion is |𝑧1|. A spectroscopist, 
for example, might interpret it as an asymmetric spectral peak and compare it with the symmetric 
Lorentzian peak shape which is ubiquitous in spectroscopy. What might surprise him is the fact that all 
its complex poles (the 𝑧𝑘 with odd k) have their real parts positive and are therefore shifted away to one 
side of the location of its maximum. The second function has for real arguments a singularity at 𝑧0 (a 
negative value) but no singularity along the imaginary axis. Both functions, shown in Figure 2, look like 
they might merit further investigation. 

- The fixed points are also complex solutions of the following equations: 

For odd k:  𝑧2 − 2𝑧 ∗ 𝑐𝑜𝑠ℎ(𝑧) + 1 = 0,  𝑧2 − 2𝑧 ∗ 𝑠𝑖𝑛ℎ(𝑧) − 1 = 0.   (18a) 

For even k:  𝑧2 + 2𝑧 ∗ 𝑐𝑜𝑠ℎ(𝑧) + 1 = 0,  𝑧2 + 2𝑧 ∗ 𝑠𝑖𝑛ℎ(𝑧) − 1 = 0.   (18b) 
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Appendix 

PARI/GP programs were written to automate the generation of the Tables II and III. 

These are their listings: 

 
Tab_ExpzFixed(Kmax,file) = { 

/* ---------------------------------------------------------- 

Lists fixed points of the mapping exp(z) with positive 

imaginary parts, one corresponding to each K, the branch 

index of log(z). Generates a 5-column plain text file with 

one line for every K, ranging from 0 to Kmax. 

The columns are: K, k=2*K+1, followed by the z_k values, 

namely its real part, imaginary part, and absolute value. 

---------------------------------------------------------- */ 

SetEbDefaults(20); 

for(K=0,Kmax,z=ExpzEQz(K); 

    write(file,K,"\t",2*K+1,"\t", 

    real(z),"\t",imag(z),"\t",abs(z))); 

} 

 

Tab_ExpmzFixed(Kmax,file) = { 

/* ---------------------------------------------------------- 

Lists fixed points of the mapping -exp(z) with positive 

imaginary parts, one corresponding to each K, the branch 

index of log(z). Generates a 5-column plain text file with 

one line for every K, ranging from 0 to Kmax. 

The columns are: K, k=2*K, followed by the z_k values, 

namely its real part, imaginary part, and absolute value. 

---------------------------------------------------------- */ 

SetEbDefaults(20); 

for(K=0,Kmax,z=ExpzEQmz(K); 

    write(file,K,"\t",2*K,"\t", 

             real(z),"\t",imag(z),"\t",abs(z))); 

} 

 

OEIS registrations 

Several of the 𝑧𝑘 values were present in OEIS [9] before this Note was written, registered in contexts 
related to the present topic but stopping at the very first steps, congruent with just the main branch of 
the logarithmic function (𝐾 = 0, |𝑘| ≤ 1). These are: 

𝑧0 A030178 (negated) 
𝑧1 A059526 (real part), A059527 (imaginary part) , A238274 (modulus) 

Submitted, but pending: 

A few more registrations will be made8 by the Author: 
𝑧2 A276759 (real part), A276760 (imaginary part) , A276761 (modulus) 
𝑧3 A277681 (real part), A277682 (imaginary part) , A277683 (modulus) 
 

  

                                                           
8 23 Nov 2016: now approved 

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL6Math16.002
http://oeis.org/
http://oeis.org/A030178
http://oeis.org/A059526
http://oeis.org/A059527
http://oeis.org/A238274
http://oeis.org/A276759
http://oeis.org/A276760
http://oeis.org/A276761
http://oeis.org/A277681
http://oeis.org/A277682
http://oeis.org/A277683


 Stan’s Library, Volume VI, Mathematics 

   15 
S. Sykora, Fixed points of exp(z) and –exp(z) in C, DOI: 10.3247/SL6Math16.002 

 

 
 

References and Links 
[1] Wikipedia: Exponential function. 
[2] E. Weisstein's World of Mathematics, Exponential Function. 
[3] Wikipedia: Complex number. 
[4] E. Weisstein's World of Mathematics, Complex Number. 
[5] Wikipedia: Fixed point (mathematics). 
[6] Wikipedia: Logarithm. 
[7] E. Weisstein's World of Mathematics, Logarithm. 
[8] Wikipedia: Multivalued function. 
[9] N. J. A. Sloane, editor, OEIS, The On-Line Encyclopedia of Integer Sequences, published 

electronically at https://oeis.org. 
[10] OEIS A030178, Decimal expansion of Lambert W(1): the solution to x*exp(x) = 1. 
[11] Wikipedia: Lambert W function. 
[12] E. Weisstein's World of Mathematics, Lambert W-Function. 
[13] PARI/GP Home 
 

 

 

History of this document 

26 Oct 2016: 

 Assigned a DOI (10.3247/SL6Math16.002) and uploaded online. 

30 Oct 2016: 

 Edited Final Remarks by adding equations (18) and Figure 2. 

11 Nov 2016: 

 Edited (and expanded) the Section ‘Relation to the Lambert function W’. 
 Submitted the OEIS entries. 

23 Nov 2016: 
 OEIS entries approved. 
 

http://ebyte.it/library/Library.html
http://dx.doi.org/10.3247/SL6Math16.002
https://en.wikipedia.org/wiki/Exponential_function
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/ExponentialFunction.html
https://en.wikipedia.org/wiki/Complex_number
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/ComplexNumber.html
https://en.wikipedia.org/wiki/Fixed_point_(mathematics)
https://en.wikipedia.org/wiki/Logarithm
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/Logarithm.html
https://en.wikipedia.org/wiki/Multivalued_function
https://oeis.org/
http://oeis.org/A030178
https://en.wikipedia.org/wiki/Lambert_W_function
http://mathworld.wolfram.com/
http://mathworld.wolfram.com/LambertW-Function.html
http://pari.math.u-bordeaux.fr/
http://dx.doi.org/10.3247/SL6Math16.002

