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Abstract

Using techniques developed in an earlier article on field noise propagation into FID'a and 1D spectra, this study
investigates the effects of various types of field fluctuations on Hahn echoes and CPMG echo trains.

Compared to an FID, the echoes (both single and multiple) refocus a substantial part of the induced phase

errors, provided the field noise is Gaussian and its mean correlation time is not much smaller than τ (the time
interval between the 90 and 180-degree pulses). For a normally distributed field noise, the echo-phase errors
never exceed those of an FID at the same total time elapsed since the excitation pulse.

When the field is subject to a periodic or quasi-periodic modulation, there are τ values at which the re-focussing
is very good, alternating with regions where the echo phase errors exceed those encountered in an FID. For a

single echo the critical τ values center around odd multiples of T/2, T being the modulation period, while the
'good' ones are in the vicinity of integer multiples of T. This picture changes in a train of n echoes. Increasing n

beyond 3, ever more ample regions of τ values with excellent field-error re-focussing alternate with ever narrower

regions of severe resonant error amplification. The critical τ  values are centered around odd multiples of T/4 and
may all but preclude a successful application of a CPMG sequence. This, among other things, explains some the
often observed striking - and so far only partially explained - CPMG artifacts.

The results provide a basis for the evaluation of errors due to field noise in those experimental techniques which
use multiple spin echoes and/or spin-locking mechanisms. Due to field noise, averaged CPMG data are biased in
a way which increases the apparent decay rate. Since this noise-induced decay factor is non-exponential, it can
simulate/modify a non-exponential decay.

I. Introduction

Conceptually, this Note builds on a previous one (1), henceforth referred-to as Part I, which deals with
the analysis of the effects of field noise/modulation on simple FID's and which the reader should
consult also for basic assumptions and terminology.

The Hahn spin echo (2) is extensively used in a wide range of NMR applications such as, for example,
T2 measurements in LR-NMR and HR-NMR, refocusing pulses in HR-NMR, spin-diffusion
measurements, sensitive plane selection and/or k-space navigation in MRI, flow imaging, receiver
dead-time masking, etc. Be it protein structure determination, brain-cancer scan, NMRD profile of an
elastomer, ex-situ measurement of a monument's masonry or a geo-prospecting well log, spin echoes
are likely to be part of the procedure.

Understanding the statistical properties of echo fluctuations in an unstable main magnetic field is
therefore of considerable importance across the whole of NMR.

This Note analyses the quantitative statistical relationship between spin echo phase instabilities and
magnetic field fluctuations. Only the Hahn spin echoes induced by RF-pulses are considered, leaving
for the moment out echoes induced by field-gradients which are used in many MRI techniques.
Though gradient echoes sensitivity to field/gradient noise can certainly be investigated by methods
similar to those adopted here, there are specifics which exceed the scope of this paper and will be
investigated later. However, we will consider the generalization of the Hahn echo sequence consisting
of trains of refocusing pulses, known as the Carr-Purcell-Meiboom-Gill (CPMG) sequence (3,4).

A well known, special phenomenon is the occasional exceptional sensitivity of CPMG spin echo trains
to certain types of periodic magnetic field fluctuations. In his carrier as NMR service engineer, the
Author has encountered practical cases when reliable CPMG measurements were all but precluded,
for example, by field modulations due to i) stray fields from the electric wiring of a laboratory or ii)
sample vibrations induced by a magnet cooling-water pump, floor vibrations induced by nearby heavy
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machinery and even by loud music. Yet, quantitative studies of the phenomenon are extremely rare
so that one usually concentrates on empirical detection and suppression of such field instabilities to a
point where they no longer appear to have a significant effect on the echo train. This, of course, is
understandable - except that one should be able to do so on the basis of a reliable theory permitting
an objective assessment of the residual disturbances. Despite this necessity, the Author has found
only one serious experimental NMR study carried out long time ago by Allerhand (5). Though some of
the equations he deduced are still valid, they lack the generality required to cover all present-day
applications and all types of field instabilities.

In order to maintain the theoretical treatment as self-coherent as possible, we will analyze the effect of
field noise on a generic n-th echo in a CPMG echo train. This then includes the special case of n=1
corresponding to a single, isolated Hahn echo and even the case with n=0 (the zero-th echo) which,
as we shall see, coincides formally with a plain FID and thus represents an independent check of the
validity of the results.

Particular attention will be dedicated to sequences of n CPMG echoes with equidistant timing. Such
trains of echoes, with n ranging sometimes into thousands, are used in both LR (low resolution) and
HR (high resolution) NMR. In the LR version one often samples just one point of each echo
(synchronized with the top of its amplitude) and acquires n such samples in each CPMG scan. The
HR version is more time consuming since one needs to acquire a whole FID starting at the top the last
(n-th) echo. Consequently, one can acquire in each scan just one echo which, however, contains the
echoes of many individual spectral lines resolvable by standard Fourier Transform techniques. In both
cases, it is the phase stability of the n-th echo which is to be determined.

Types of spin-echo instabilities

Consider the CPMG sequence [(π/2)x - τ - (π)y - τ - acquisition]. The echo amplitude at time t = 2τ (the
'top' of the echo) contains a number of factors due to such diverse phenomena as transverse
relaxation (T2), self-diffusion (D), homonuclear couplings (J) and 'chemical' exchange, none of which
affects its RF phase. On the other hand, spin echo eliminates (refocuses) the effects of field/RF
offset

1
, field inhomogeneity, chemical shifts and heteronuclear couplings.

Any spin-echo instability therefore arises from imperfections in one or more of the re-focussing
phenomena. This leads to three broad classes of spin-echo fluctuations:

1) Instabilities due to mean field/offset fluctuations which have a direct impact on the echo phase
but not on its absolute magnitude. When the echo signal is acquired using a phase- & offset-
insensitive detection method (diode detection, RF envelope detection or signal power detection) such
instabilities don't show up - a fact which can be used to discriminate them from the other types.
Instabilities of this kind (see Part I for a more detailed discussion) are the most common ones in
practice and the only ones to be investigated in this Note.

2) Instabilities due to field inhomogeneity fluctuations. Such instabilities affect both echo phase
and echo magnitude (in extreme cases, they may completely prevent echo formation).

3) Instabilities due to fluctuations in spin system parameters (chemical shifts and scalar
couplings). This broad class of phenomena is often lumped under the very broad and generic term
chemical exchange (6,7). Though, in principle, such phenomena can also be studied by theoretical
methods similar to those adopted here, the topic does not match the scope of this series and shall be
pursued in detail elsewhere.

Since most modern NMR instruments employ quadrature phase detection, the echo phase and all its
statistical characteristics are experimentally accessible and will be taken into consideration in our
analysis.

                                                          
1
 As usual, the term 'offset' stands for the difference between Larmor frequency and the phase-detector's 'real'

channel RF-reference frequency which provides also the conventional reference for all RF phases.
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II. Phase of the n-th spin-echo in a CPMG sequence

Let us consider the classical CPMG sequence

(π/2)x - [τ - (π)y - τ]n - acquisition

with various values of n (including n=1 and, as we shall see later, n=0). Clearly, the isolated Hahn
echo investigated in Section I is a special case of this sequence for n=1.

Since each (π)y pulse reverses the sign of of the signal phase-accumulation process, the signal phase

of the n-th echo at time 2τn after excitation is given by the integral

∫∫
+∞

∞−

τ

τχγ=τχγ=τφ≡φ dt)t(b)t,(dt)t(b)t,()n2( nnn

n2

0

, [1]

where, like in Part I, b(t) is the fluctuating component of the

magnetic field, γ the gyromagnetic ratio of the measured

nuclei and χn(τ,t) is the sign-inverting function of time

applied in the interval from t=0 to t=2τn but, for
computational simplicity, zero-extended to the whole range
of real values (see Fig.1. for examples). Within the interval

[0,2τn] the function χn(τ,t) assumes the values of either +1
or -1, starting with +1 at t=0 and inverting sign

synchronously with every (π)y pulse (Fig.1).

By definition, <b(t)> = 0. Consequently, the mean value of

φn is also null,

<φn> = 0, [2]

while for the variance we obtain (proceeding as in Part I)

∫ ∫
+∞

∞−

+∞

∞−

><τχτχγ=>φ< 'dtdt)'t(b)t(b)'t,()t,(  nn
22

n [3]

  ∫
∞+

∞−

ζζζτγσ= d)(w)(c)n2()( n
2

where σ is the r.m.s. value of b(t), c(ζ) is its auto-
correlation function normalized to c(0)=1, and

∫
+∞

∞−

ζ+τχτχ
τ

=ζ dt)t,()t,(
n2

1
)(w nnn , [4]

The symmetric function wn(ζ) is composed of linear
segments with their end points located at every multiple of

τ (for examples, see Fig.2). It attains its absolute maximum

of wn(0) = 1 for ζ = 0 and vanishes for |ζ|/τ ≥ 2n. The

values at the points of discontinuity (|ζ|/τ = k,
k=0,1,2,...,2n) fall into 4 series according to the value of m
= k mod 4:

wn(kτ) = 1-k/2n when m=0, [5]

wn(kτ) = -1/2n when m=1,

wn(kτ) = -1+k/2n when m=2 and

wn(kτ) = +1/2n when m=3.

The function wn(ζ) is therefore a wavelet (8) and the integral in Eq.[3] can be seen as a wavelet
transform of the auto-correlation function of field instabilities. It is also evident that for even

moderately large n, wn(ζ) has a large harmonic content centered around a period of 4τ rather than

around 2τ which is a value characteristic of the isolated-echo case w1(ζ).

Fig.1. The graphs of χ1(τ,t) (upper) and

χ6(τ,t) (lower) against t/τ. The echoes

occur at every even value of t/τ.

Fig.2.

The functions w1(ζ) (thin) and w6(ζ) (thick)

plotted against ζ/τ.
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The transition from a period of 2τ (limited to the fringes of the χ functions) to one of 4τ (typical for their

central portions of the χ functions when n>1) is best understood by comparing the two χ functions
shown in Fig.1. This phenomenon is born out by experiment: in the presence of periodic field
modulation with a period T, long CPMG trains are subject to extreme fluctuations in the immediate

vicinity of τ = T/4 while single-echo is affected most when τ = T/2.

Other qualitative features implicit in the shape of wn(ζ) regard the limit behavior for very short and very

long τ's. It is evident from Eq.[3] that when c(ζ) drops to zero in a small fraction of τ (field-noise auto-

correlation time much shorter than τ), the variance <φn
2
> tends to vanish. In the opposite case of τ

much shorter then the auto-correlation time, one has to take into account that the mean value of wn(ζ)

is zero for any n. Consequently, the effects of field fluctuations which are very slow compared to τ
also tend to average out (this goes hand-in-hand with the offset re-focussing properties of the CPMG
sequence).

III. Explicit formulae for the n-th spin-echo phase variance

When c(ζ) is an exponential function

τζ−=ζ /||re  )(c [6]

with a real or complex parameter r, the integral in Eq.[3] can be computed explicitly. This covers all
the most important cases of field fluctuations considered in Part I (stochastic, periodic and quasi
periodic). We set

∫∫
∞

−τζ− τ=ζζ
τ

=
∞+

∞− 0
n

xr
n

/||r
n dx)x(wed)(we

2

1
  )r(s , [7]

and cast Eq.[3] into the form

<φn
2
> = (γσ)

2
(2τn)

2
sn(r)/n = 2tn.(γσ)

2
Tm rsn(r), [8]

where tn = 2τn is the time between the excitation pulse and the top of the n-th echo.

Let us now evaluate sn(r). We shall use the following exact formula (9) for exponential integrals of
polygonal functions (i.e., functions composed of linear segments):

{ }[ ]n0kn

0

rx
nn

rx
00

n
0k

rx
k

x

x

rx ey)r(hey)r(hey)r(hdx)x(pe −−
=

−− ∆+∆−∆∆= ∑∫ , [9]

where r is a complex constant, (xk,yk), k=0,1,2,...,n, is a sequence of data points with equidistant x-

coordinates, p(x) is a function composed of linear segments connecting the consecutive data points, ∆
= xk+1-xk for every k=0,1,2,...,n-1 and

h(ξ) = {g(-ξ)-g(ξ)}/ξ = h0(ξ)+hn(ξ),  where [10]

h0(ξ) = {g(-ξ)-1}/ξ  and  hn(ξ) = {1-g(ξ)}/ξ = h0(-ξ),  with g(ξ) = (1-e
-ξ)/ξ.

Applying Eq.[9] to Eq.[7] we have k=0,1,...,2n, xk=k, yk=wn(kτ), y0=1, y2n=0, ∆=1 and ξ = r. Hence

∑∫ =
−∞ − =−=τ= n2

0k
kr

k0 n
xr

n eyS      where,)r(hS)r(hdx)x(we )r(s. 0 [11]

Since the yk values, given by Eqs.[5] are linear functions of k, the summation can be carried out
explicitly using the standard formulae (10)
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x , [12]

valid for any complex x ≠1 and integer n. Considering Eqs.[5], setting x = e
-4r

, replacing k by 4κ+m

and summing over κ and m separately, one obtains

3210 SSSSS +++= [13]
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where
2
 K0 = n\2, K1=K2=(n-1)\2, K3=(n-2)\2 and S2=S3=0 when n<2.

The simplification of these formulae is a cumbersome process which, fortunately, leads to a very
compact result

3
. Setting z=e

-r
, one obtains

)r(h
z1

)z1(

2

z

n

z1
1

z1

)r(h
)r(s 02

2n2

2n −








+
−±

−
+

= . [14]

with the upper sign applying to odd n and the lower sign to even n (The fact that odd and even echoes
follow slightly different formulae is hardly surprising. Such a difference turns out every time one
studies any kind of artifacts related to a spin-echo train). For the first echo, Eq.[14] simplifies to

s1(r) = h(r)(1-z/2)-h0(r) = {g(2r)-2g(r)+1}/r. [15]

IIIa. Random field noise

We shall now discuss the effects of the several special
types of field fluctuations (the same which had been
considered in Part I). For random field instabilities with

r.m.s. value σ and normalized auto-correlation function c(ζ)

= e
-|ζ|/Tm

 (Part I, Eq.[19]), one can apply Eqs.[8] and [14] as

is with the real parameter r standing for r = τ/Tm.

It turns out (Fig.3) that in this case the functions sn(r)
exhibit relatively modest variation with respect to the value
of n. This feature justifies the form adopted in Eq.[8] which,

apart from sn(r), makes <φn
2
> proportional to n. It fits with

the idea that, for a fixed τ, the phase instabilities of the
consecutive echoes in a CPMG train can be treated as a
phase-diffusion process and thus lead to an approximate

linear dependence of <φn
2
> on n. In a sense, the residual

dependence of the sn(r) curves on n expresses just the
deviations of reality from such a phase-diffusion model.

The derivative of sn(r) at r=0 is 1/3. Consequently, for r<<1 we have sn(r) ≈ r/3 -... and, for fixed τ and

Tm→∞,

limTm→∞ <φn
2
> Tm = (γσ)

2
(2τn)

3
/6n

2
[16]

indicating that when the field fluctuations become much slower than τ, their effect on the spin-echo
phase instability vanishes. Notice the following features valid in the r<<1 limit:

- cubic dependence on τ for fixed n

- cubic dependence on the echo time t=2τn for fixed n,

                                                          
2
 When a and b are integers, we denote by a\b the integer part of the ratio a/b.

3
 One must treat separately the first echo, the even echoes and the higher odd echoes (n = 3,5,7,...). It then turns

out that the formula for the first echo coincides with the one for higher odd echoes.

Fig.3. Functions sn(r)
for n=1 (lowermost thick), n=2,3,4,5 (thin)

and n=1000 (upper thick).
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- linear dependence on n for fixed τ
- inverse quadratic dependence on n for fixed t.

For large r, s(r) can be approximated by its expansion into powers of r
-1
.

The first term is s(r) = r
-1
 -... which, for fixed τ, leads to

limTm→0 <φn
2
>/Tm = 2(γσ)

2
(2τn), [17]

implying that when the field fluctuations are much faster than τ, their effect on spin-echo phase
instability also vanishes. In this case, however, we have:

* linear dependence on τ for fixed n

* linear dependence on the echo time t=2τn for fixed n,

- linear dependence on n for fixed τ
* no dependence on n for fixed t,

with the asterisks marking a difference compared with respect to the previous case.

For a fixed τ and n, there exists a value of r at which the effect of field fluctuations on the spin echo

attains a maximum. Its position is almost independent of n. For n=1 it corresponds Tm ≈ 0.529τ where

rmax ≈1.89 and s1(rmax)≈ 0.190, while for n→∞ it occurs at Tm ≈ 0.621τ, rmax ≈1.61 where sn(rmax)≈ 0.265.
By Eq.[8], the absolute maximum effect of the field noise is therefore given by

<φn
2
>max ≈ kn.n.(γσ 

Tm)
2
,   [18]

where the constant kn=4rmax
2
sn(rmax) is nearly independent of n (2.72 for n=1 and 2.75 for n→∞).

So far, the analysis dealt with a variable Tm which is a point of view of an instrumentation engineer. A
more common situation is the one encountered by an end-user who is faced with a given magnet

system (fixed Tm) and a possibility to vary τ and n. It is then convenient to write Eq.[8] as

<φn
2
> = 4(γσ)

2
 Tm

2
 n r

2
sn(r), [19]

where the τ-dependence, normalized with respect to Tm, is
all comprised within the functions r

2
sn(r) which start with a

cubic dependence on τ but then slow down to one which is
asymptotically linear. The dependence of the r

2
sn(r) curves

on n is relatively mild.

What does not quite transpire from Fig.3. is the spin-
locking capability of the CPMG trains when the echo time

t=2τn is kept fixed while n is being increased. Let us

therefore express <φn
2
> as a function of the normalized

echo-time parameter t' = (2τn)/Tm = t/Tm. In order to keep t'

fixed while varying n, one has to vary τ so that r ≡ τ/Tm =
t'/2n. In order to honor the approximate phase-diffusion
model, we shall also express explicitly the linear

dependence of <φn
2
> on t', writing

<φn
2
> = (γσ)

2
 Tm

2
 t'

 
Fn(t'), [20a]

where, according to Eq.[8], the function Fn is given by

Fn(t') = 2(t'/2n)sn(t'/2n), [20b]

This can be compared with an analogous expression for
FID phase fluctuations,

<(φf-<φf>)
2
> = (γσ)

2
 Tm

2
 t'

 
Ff(t'), [20c]

where Ff(t') = 2(1-g(t')), which follows from Eq.[20] of Part I.

The functions Ff(t') and Fn(t') are shown in Fig.4 for several values of n. They illustrate the efficiency
with which the insertion of an increasing number n of echoes between the excitation pulse and the
signal sampling moment suppresses the leakage of stochastic field fluctuations into the signal phase,

Fig.4.
Functions Fn(t') against the reduced echo-
time t'=t/Tm, for n=1 (upper thick), 2,3,4,5,
10 (lower thick) and 20 (lowermost). The
topmost, dotted curve is Ff(t') pertinent to a
simple FID.
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leading in the limit of n→∞ to a perfect spin-locking even in the presence of quite fast stochastic field
fluctuations.

It is also evident that the phase-diffusion model (which would imply a constant value for all the

functions) holds only in the limit of t'→∞ when all the functions become equal to 2. We can really talk
about phase diffusion (Fn(t') values above ~1.5) only when t'>10n, i.e., t>10nTm.

It is interesting to notice that the function Ff positions itself in the Fn series in a place where we would
expect to find the hypothetical function F0. This interpretation of an FID as the zero-th echoes (n=0)
seems to be consistent with a number of formulae and situations.

Numeric example for a single echo (n=1): Present FFC magnets are subject to instabilities of the

order 25 mGauss rms (γσ of about 670 rad/s for protons) with a characteristic time constants of about

0.5 ms. This leads to <φ1
2
>=(0.274)

2
 [rad

2
] for τ=0.5 ms (probable error of 15.7 degrees) which drops

to <φ1
2
>=(0.012)

2
 [rad

2
] for τ =50 us (probable deviation of 0.68 degree).

IIIb. Periodic field modulation

In order to exploit Eqs.[6-13] in the case of a harmonic

auto-correlation function c(ζ) = cos(ωζ) (see Part I), one
needs to resort to complex-valued arguments r.

Considering that c(ζ) and wn(ζ) are both symmetric

functions of ζ and cos(ωζ) is the real part of e
iω|ζ|

, it is
evident from Eq.[7] that sn(r) can be obtained simply by

evaluating Eq.[13] with the complex argument r = -jωτ (or

+jωτ) and taking the real part of the result.

Like in Part I, we shall use the parameter ρ = τ/T, where T
is the modulation period. Writing

pn(ρ) = Real{sn(2πjρ)}/n,   [21]

where Real{...} denotes the real part of a complex quantity

and sn(r) is given by Eq.[14], the formula for <φn
2
>

becomes

)(p)n2()( n
222

n ρτγσ=>φ< . [22]

The functions pn(ρ) can be evaluated numerically for any n
using Eqs.[14] and [21]. Several examples are plotted in
Fig.5. Comparing these with the results obtained for
stochastic fluctuations (Fig.3), one finds both analogies

and differences. In particular, keeping τ fixed and varying
the period T, we see that the effect of field modulation on
the spin echo phase again vanishes for both very short
and very long periods.

In the important special case of n=1 (single/first echo) one
can easily derive the explicit formula

[ ]22
1 )(sin)(p πρπρ=ρ [23]

which has an absolute maximum at ρmax ≈ 0.37 with p(ρmax) ≈ 0.525, accompanied by a series of

smaller overtones close to every half-integer ρ.

The new phenomena evidenced by Fig.5 include:

- With increasing n, the location of the absolute maximum shifts rapidly to its limit value of ρ = 0.25

(i.e., τ = T/4). This is the T/4 effect anticipated in Section II.

- The main maximum becomes progressively sharper, its half-height width decreasing approximately
with 1/n.

Fig.5. Functions pn(ρ)
for n=1 (dotted), 2 (thin), 3 (thick, upper

plot) and 20 (thick, lower plot).
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- With increasing n, there appear progressively sharper additional maxima (sidebands), located close
to every odd multiple of T/4.

Fig.5, though useful, does not reflect two common situations often faced by a typical NMR user:

A) Constant echo time t=2nτ with a variable number n of interposed echoes (τ is then a dependent
variable to be adjusted for each n to match the chosen value of t). This is typical of the high-resolution
variety of CPMG where the train of echoes is followed by acquisition of delayed FID. The situation
also arises in re-focussing sections of complex pulse sequences (n is in these cases usually limited to
very low values).

B) The low-resolution CPMG variety where a long train of echoes (often many thousands) is acquired

with a fixed τ (usually acquiring just the top of each one). In this case the independent variable is n but

the echo time t=2nτ increases proportionally to n (τ can be viewed as a parameter which defines the
proportionality constant).

Case (A): HR-CPMG and re-focussing sequences.

In this case it is best to express <φn
2
> in terms of the normalized-time parameter t'= t/T as

<φn
2
> = (γσT)

2 
Pn(t'), [24]

where the functions Pn(t') = t'
2
pn(t'/2n) are expected to be periodic. In particular, we expect the maxima

to coincide with τ=(2k+1)(T/4) and therefore t'=n(k+1/2), where k=0,1,2,... The plots in Fig.6 show that
this is indeed the case - plus a number of additional and
not quite intuitive features which become evident when

n≥3:

- The maxima are surprisingly high, exceeding
substantially those encountered in an FID (Part I, Fig.4,

κ=0). It follows that, at selected values of τ, the CPMG
echo train selectively amplifies the field modulations rather
than re-focussing them. The amplification at t'/n=k+1/2
thus has all the features of a resonance phenomenon.
Consider that the effect of the same periodic disturbance
on the phase of a simple FID is described by the function,
easily deduced from Eq.[29] of Part I,

Pf(t') = (1/π2
) sin

2
(πt'/n) [25]

which is periodic with a maximum value of just about 0.10.
In comparison, even P1(t') has maxima which are 4 times
higher (about 0.405) and the peak values of Pn(t') tend to
grow linearly with n.

- At t' values which surround odd multiples of n (we shall
refer to these as the odd intervals), there is a comb-like
pattern of fringe peaks (n-2 in total) which are small with
respect to the main maxima but still substantially larger
than the Pf(t') maxima (the values of smallest ones in the
central part seem to be consistently about 0.4 - the same
height as the P1(t') lobes). In the local valleys between
these fringe peaks, there are n-2 equidistant points where
re-focussing is perfect. It is therefore rather difficult to say
anything definite about the odd intervals without a careful
prior analysis of the exact value of t'/n.

- There is an excellent re-focussing at t' values which surround even multiples of n (the even
intervals). The even intervals fringe peaks, though present in the same number as their odd
counterparts, are much smaller and virtually vanish around the center of the intervals, with the
excellent re-focussing region covering over half of each even interval.

Fig 6.
Examples of the functions Pn(t') for n=1

(upper graph, thin), n=5 (upper graph, thick)
and n=10 (lower graph)
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Case (B): LR-CPMG.

To handle this case, it is convenient to rewrite Eq.[22] as

 )(pn)2()n(P     where, )n(P)T( n
2222

n ρρ≡γσ=>φ< ρρ . [26]

The function Pρ(n) defines completely the dependence of <φn
2
> on n. The rather spectacular behavior

of Pρ(n) is exemplified for various values of ρ in Fig.7.

The upper graph in Fig.7 shows the propagation of the field modulation into the first 120 echoes for

values of ρ ≡ τ/T comprised between 0 and 0.25. Its variation over 5 decades shows how the excellent

field re-focussing at low ρ values progressively turns over into a resonant amplification when ρ
approaches the critical value of 0.25. This, however, does not necessarily happen uniformly for all the
echoes.

Consider, for example, the curve Pρ(n) for ρ = 0.23 (upper
graph, bold). First of all, it is periodic with a period

4
 of

np = abs(1/[2(ρ-0.25)]),   [27]

which for  ρ = 0.23 gives np = 25. Consequently, every 25-th
echo is not influenced by the field fluctuations at all, while the
in-between echoes are influenced very strongly (roughly 50
times more than an FID).

In the limit of ρ = 0.25, the periodicity disappears (infinite
cycle length) and there is a linear accumulation of the
perturbation throughout the echo train. The phenomenon is
so pronounced that even a slight inhomogeneity of the
periodic field perturbation across the sample (a possibility
which we have not included in our assumptions) eventually
compromises the echo formation. Experimental data (to be
discussed later) bore out all the implications of Eq.[26]

everywhere except in a very close vicinity of the critical ρ
values where not just phases but also the magnitudes of the
echoes may be strongly affected at large values of n.

Compared with an FID, the break-even point occurs at ρ ≈
0.168 (upper graph, lowermost curve) in the sense that below
that value no echo is influenced more than any point in an
FID at the same time since excitation.

The bottom graphs in Fig.7 provide a comparison between

the functions Pρ(n) for a few values of ρ distributed in a similar

manner within the odd interval 0.25 ≤ ρ ≤ 0.75 and within the

even interval 0.75 ≤ ρ ≤ 1.25. The following features become
evident:

- At a comparable distance of ρ from the nearest critical
value, the disturbances are more pronounced within the odd

intervals 0.5k -0.25 ≤ ρ ≤ 0.5k+0.25 than in the even ones.

- Within each interval, the two functions P0.5k-ρ(n) and P0.5k+ρ (n) are identical (reflection symmetry with
respect to the center of the interval.

- Naturally, since Pρ(n) is periodic with respect to ρ with a period of 1, all the even intervals are
identical and so are all the odd intervals.

                                                          
4
 Analytical inspection of the function pn(ρ) and all the functions derived from it is not at all easy but some of its

features, such as the n-period mentioned here, can be deduced relatively easily. The explicit math, however,
does not add much to the insights gained by the numeric approach and is therefore skipped.

Fig. 7.

Semilog plots of the functions Pρ(n) for

various values of the parameter ρ.
- Top (ρ≤0.25), listed in the order of decreasing

maximal values: ρ = 0.25, 0.2475 (bold), 0.245,
0.24, 0.23 (bold), 0.2 and 0.168.

- Bottom: ρ = 0.2525 and 0.7475 (bold), 0.3 and
0.7 (thin), 0.5 (comblike), 0.8 and 1.2 (dotted)
and 1.0 (not visible; lies below the graph edge).
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IIIc. Quasi-periodic field modulation

The most generic case to which Eqs.[6-13] can be applied

is characterized by the auto-correlation function c(ζ) = e
-

|ζ|κω 
cos(ωζ), describing quasi-periodic field fluctuations

(see also Part I) with a center frequency ω and a frequency

spread of 2κω (k being a dimensionless factor). Again,

considering that c(ζ) and wn(ζ) are both symmetric

functions of ζ and e
-|ζ|κω 

cos(ωζ) is the real part of e
(i-κ)ω|ζ|

, it
is evident from Eq.[7] that sn(r) can be obtained simply by
evaluating Eq.[13] with one of the the complex arguments r

= (κ±j)ωτ and taking the real part of the result. We shall

again use the parameter ρ = τ/T, where T=2π/ω is the
central period. Writing

pn(ρ,κ) = real{sn[2πρ(κ±j)]} / n, [28]

where sn(r) is given by Eq.[14], the formula for <φn
2
>

becomes

),(p)n2()( n
222

n κρτγσ=>φ< . [29]

For κ=0, the functions pn(ρ,κ) coincide with the pn(ρ) of the
previous case so that we can expect the present case to
be a generalization of the previous one. It is not
immediately obvious, however, what is the impact of the
modulation frequency instability on the resonance effects
discussed above.

Using Eqs.[28] and [29], we can inspect the effect of non-

zero κ on the two special cases (i.e., on Figures 6 and 7).

Case (A): HR-CPMG and re-focussing

Rewriting Eq.[24] as

<φn
2
> = (γσT)

2 
Pn(t',κ), [30]

where Pn,κ(t')=t'
2
pn(t'/2n,κ), Fig.6 gets modified as shown in

Fig.8 for a two values of n and for κ = 0.005 and 0.05 (1%
and 10% instability in the modulation frequency,
respectively). These are to be compared with the n=1 and

n=10 cases of Fig.6 where κ = 0.

The result is a progressive damping of the oscillatory,
resonance pattern and the appearance of a growing
phase-diffusion component. This is similar to the results
obtained for plain FID in Part I.

We shall postpone further discussion of these effects but
one more feature should be pointed-out right now. For
higher values of n (as evidenced for n=10 in the lower
graph of Fig.8) the initially marked distinction between the
even and odd intervals tends to get 'filtered out' by even modest fluctuations in the modulation
frequency. What disappears still faster is the fine pattern of fringe peaks between the principle

resonance peaks. It is also interesting that there are regions where the peak values of Pn,κ(t')

decrease with increasing κ.

Case (B): LR-CPMG

The generalized Eq.[26] is

Fig 8.

Pn,κ(t') plotted for various values of n,κ:
n = 1 (top graph) and 10 (bottom graph)

κ = 0.005 (thin) and 0.05 (bold)

Fig.9

Pρ,κ(n) plotted for κ=0.005 and the following

ρ-values (top down): 0.25, 0.2475 (bold),
0.245, 0.24, 0.23 (bold), 0.2 and 0.168.
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 )n(P)T( ,,
22

n κργσ=>φ< ,   [31]

 ),(pn)2()n(P n
22

,, κρρ≡κρ .

The functions Pρ,κ(n) are shown in Fig.9 for κ=0.01 (corresponding to just 2% instability in the

modulation frequency). This is to be compared with the upper graph of Fig.7 corresponding to κ=0.
The result is again a surprisingly efficient damping of the oscillatory pattern combined with a modest
phase-diffusion contribution. Most important is the fact that i) no echoes are now exempt from the

perturbation and ii) with increasing κ, Pρ,κ(n) tends to a value which is only moderately lower than the

maxima of Pρ(n), indicating that the resonance effect is to a large extent still present.

IV. Propagation of field-noise errors into accumulated spin-echo data

We shall now concern ourselves with the effects of field noise on the amplitudes of accumulated data
whose generation involved one or more spin-echoes. To evaluate these second-order effects (in the
first order the phase errors average to zero) we shall apply the theoretical principles introduced in Part
I. It should be pointed out, however, that first-order phase error effects may have a more severe
impact when re-focussing spin-echo pulse-sequence sections are used as building blocks of more
complex pulse sequences which in some cases rely on their phase stability.

When data are accumulated in a standard way through repeated scans, there remains a second-order
bias. Following step-by-step the arguments which led to Eqs.[10] and [11] of Part I (the only difference

consisting in the replacement of φf(t) by φn), it is easily shown that:

i) The effect on the accumulated echo amplitude is expressed by the multiplicative factor

Gn = <exp[jφn]>. [32]

ii) In the case of a normally distributed, Gaussian field noise, Eq.[32] evaluates to

Gn = exp(-<φn
2
>/2). [33]

Non-Gaussian and/or mixed cases like the ones of periodic and quasi-periodic perturbation shall be
also treated following the methods outlined in Part I (Eqs.[32] and [38] therein).

IVa. Random field-noise

Since Eq.[33] is in this case exactly applicable, we can
combine it with Eq.[8], obtaining

Gn = exp(-<φn
2
>/2) = exp[-(γσ)

2
(2τn)

2
sn(r)/2n]

     = exp[-(2τn) (γσ)
2
Tm rsn(r)], [34]

where sn(r) is given by Eq.[14] and, as usual, r=τ/Tm.

Eq.[34] has many practical consequences, the most
notable of which are the errors it introduces into the
measurements of the relaxation times T2. Regardless of
whether a HR-CPMG or a LR-CPMG sequence is used for

this purpose, one always sets up a fixed τ and measures
the decay of the echo with respect to increasing echo
number n which is proportional to the elapsed echo time

2τn. The decay is affected by T2, homonuclear spin-spin
couplings (the J's), 'chemical exchange', spin diffusion,
and convective flow (the latter two in the presence of

Fig.10.
The functions rsn(r) for n=1 (lowest curve),
n=2,3,4,5 (the thin curves) and n=1000
(the upper curve).
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sufficiently strong field gradients). In the limit of τ→0 only the T2 process remains effective
5
 and the n-

th echo signal is given by S(tn) = S0exp(-2τnR2) = S0exp(-tnR2), where R2=1/T2 is the relaxation rate. In
the presence of random field noise, Sn must be multiplied by Gn so that, for averaged CPMG decays,

S(tn) = S0exp{-tn[R2+w rsn(r)]}, [35]

where w = (γσ)
2
Tm.

The effect can be described as an extra contribution of wrsn(r) to the apparent relaxation rate T2. The
factor rsn(r), plotted in Fig.10, has only a modest dependence on n which is limited to a few starting
echoes. The distortion of Sn is essentially mono-exponential except for the fact that the starting
echoes (n = 1 to 5) are a bit lower than expected. Since rsn(r) tends towards 1 for large values of

r=τ/Tm, the extra contribution to R2 tends towards w, while it vanishes for small tau values. Using a

suitable substance (one void of any inherent τ-dependence of the CPMG decay), the dependence of

the extra contribution on τ can be used to empirically assess the quantities (γσ) and Tm.

IVb. Periodic field modulation

By Eq.[32] of Part I, the effect of the field modulation on the accumulated n-th echo signal is its
multiplication by the real factor Gc,n (the index c stands for 'cyclic')

( ) ( ) (n)R wt2Jn2JG c n0
2

0n,c ρ=>φ<= , [36]

where wc = (γσ)
2
T, Rρ(n) = ρ Real{sn(2πjρ)}, and the last expression has been obtained using Eqs.[21]

and [22].

Fig.11 illustrates the function Rρ(n) for a few values of ρ in the vicinity of the resonant critical value of

ρ=0.25. It shows that significant distortions occur only when ρ is quite close to the critical value and,
unless it is too close, they affect only a relatively limited
number of starting echoes. It should be kept in mind,
however, that what we are discussing here are the second-
order effects on the CPMG decays averaged over a
potentially infinite number of scans. Even when such
effects appear small, the first-order phase instabilities,
appearing as a severe decay irreproducibility, force the
instrument operator to dramatically increase the number of
scans to be taken.

In most practical cases, the Bessel function in Eq.[32] can
be approximated by a Gaussian, exploiting the fact that,

for |x|<1, exp(-x
2
/4) ≈ J0(x) with an error smaller than

0.014. When 2wcRρ(n)<1 we therefore have

Gc,n ≈ exp{-tnwcRρ(n)} so that

S(tn) = S0exp{-tnR2} Gc,n [37a]

≈ S0exp{-tn[R2+ wcRρ(n)]}, [37b]

where Eq.[37a] is the exact formula and Eq.[37b] is the
approximation.

In the case of transverse-relaxation measurements, the quantity wcRρ(n) can be viewed as the field-
modulation bias imposed upon R2 should the latter be determined simply from the attenuation of the
n-th echo at time tn.

The upper graph in Fig.12 illustrates the effect of periodic field modulation on averaged experimental
CPMG decays. Notice that the example implies (γσ)

2
 = 1000 rad

2
 so that γσ ≈ 32 rad, a value corresponding

                                                          
5
 In some cases this is an oversimplification but that does not really have any impact on our discussion.

Fig.11.

Functions Rρ(n) for the following values of

the parameter ρ=τ/T (top to bottom):
0.25, 0.2475 (thick), 0.245, 0.24, 0.23

(thick), 0.2 and 0.1
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for protons to a mains-related field-modulation amplitude of about 0.12 µT which, for a normal laboratory
environment, is a relatively small value.

IVc.Quasi-periodic field modulation

As discussed in Section IIIc, in the case of unstable

modulation frequency with an instability factor κ one needs

to replace the Rρ(n) of Eq.[36] with Rρ(n) = ρ
real{sn[2πρ(κ±j)]}. Moreover, one should separate the

transient oscillatory component of <φn
2
> from the linear

phase-diffusion term and then use the former in a Bessel
weighing factor and the latter in a Gaussian one (see what
has been done for the FID's in Section IIIc of Part I).
Unfortunately, unlike in the case of FID's, it appears very
difficult to carry out the separation (except, perhaps, by
numerical means).

Figures 8 and 9 indicate, however, that even very small
modulation frequency instabilities lead to an efficient
damping of the oscillations which means that the Gaussian
weighing factor should in most cases prevail. Since, as we
have seen in the preceding Section, the Gaussian

approximation is reasonable even for κ=0, it can be

expected to be quite good for any κ (except perhaps when

κ is extremely small and ρ is extremely close to one of the
critical values).

The lower graph in Fig.12 exemplifies the effect of a non-

zero value of κ evaluated using both the Gaussian
approximation of Eq.[37b] and the 'Bessel approximation'
of Eq.[37a]. On the basis of the preceding discussion (and
of Fig.9) we expect the 'exact' curves to stay always
between these extreme cases and to fall closer to the

Gaussian one for any κ greater than about 0.005.

As expected, the effect of non-zero κ is to mitigate the

resonance-like effects for ρ lying in the vicinity of the
critical value. Moreover, notice that some of the distorted
curves could be easily mistaken for bi-exponential decays.

V. Conclusions

We have shown how the phase noise due to magnetic field instabilities propagates into isolated, as
well as multiple NMR echoes. Identical effects might be due also to the phase noise of the receiver
reference frequency (this, however, is normally expected to be far too small to cause any problems).

After delimiting three basic typical types of magnetic field noise (random, periodic, and mixed), we
have derived specific formulae covering the individual cases. The mathematics which emerges is
rather complex but, at the same time, quite fascinating.

It turns out that long trains of periodically repeated pulses like those used in the CPMG sequence
interact with the corresponding frequency components of magnetic field fluctuations in a highly
selective way. This has many obvious consequences in terms of understanding instrumental artifacts
and proper planning of experiment involving single- and, in particular, multiple- echoes.

Fig.12.

Upper graph: Plot of an averaged CPMG

decay S(tn) for T=20 ms, R2=0.5 s
-1

, wc≡
(γσ)

2
T= 20 rad

2
s

-1
, and, form bottom up, ρ =

0.25, 0.2475, 0.245 (thick), 0.24, 0.23, 0.2
and 0.1 (overlapping the true decay). The
dotted traces are Gaussian approximations
(Eq.[37b]) to the nearest exact curves

(coincidend for ρ ≤0.24).

Lower graph: As above but with modulation

frequency instability factor of κ =0.01. The
Gaussian approximations are in this case
expected to be closer to reality (see text).
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So far we have discussed only the artifacts due to the statistical bias of signal phase projections which
can be appreciated in averaged echoes and echo trains. One should also try and establish some of
the statistical characteristics of single-scan echoes and echo trains and, more generally, those
characteristics which pertain to the averages obtained after a limited number of scans. The route
towards such statistics has been paved but the ground which it opens is yet to be explored.

Some practical consequences of this study have been already pointed out (mostly in Section IV). Of
particular practical value are the predictions (both qualitative and quantitative) regarding the field-
noise contribution to the apparent value of the measured T2's and the emergence of an anomalous
non-exponential behavior of CPMG-decays. Clearly, however, there is still much more to be done.
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