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Everybody knows the meaning of the term “spectral multiplet 
deconvolution” and most are aware that the algorithms dedicated to 
this task are by no means simple, since they involve quite extensive –
and often somewhat fuzzy – prior knowledge (input other than the 
experimental data themselves) such as the number of lines in the
multiplet, their shapes, and artifacts such as baseline distortions. 
Presently, all such algorithms require a rather tight user control over 
the input parameters in order to provide meaningful results even when 
dealing with relatively modest multiplets (2-20) lines.

We have attempted a much more ambitious goal: a full, 
automatic decomposition of a complete spectrum, or of a part thereof, 
into a number of “peaks” and a peak-less residue. For the first time, this 
task can be satisfactorily handled by a computer algorithm which, 
however, turns out to be necessarily substantially more complex than 
what one might expect at first glance. This presentation illustrates the 
principle problems we have encountered and the strategies employed 
to overcome them in order to be able to cover spectra of virtually any 
complexity.

One problem consists in the necessity to define the total number 

of spectral peaks present in the spectrum prior to any fitting. These 
peaks should account for all spectral features recognizable by a trained 

human eye, such as local maxima, barely resolved peak splittings, and 
peak ‘shoulders’, but not ‘invent’ any peaks which are not really 
required. The reason is that sets of lineshape functions of any kind are 
never linearly independent. Consequently, a decomposition in which 
the number of peaks were itself fittable would never be unique. For 
example, a single Lorentzian can be fitted extremely well by three 
different Lorentzians, and any slightly distorted Lorentzian will be fitted 
by three Lorentzians much better than by a single one, even when the fit 
has no physical meaning.

To account for all qualitatively discernible spectral features prior 
to any fitting, we analyze in detail the experimental spectrum as well as 
its numeric derivatives (1st and 2nd). The latter can be computed  
automatically and reliably using Savitsky-Golay convolution filters with 
automatically set filter parameters (the settings are based a novel and 
robust mean-linewidth estimator). A reliable second derivative, for 
example, has typically a S/N ration which is just about 3 times worse 
than that of the original spectrum.

But even pre-determining all the discernible spectral peaks is 
still not enough to carry out a successful GSD. Another problem 
regards the spectral lineshapes which are generally poorly defined and 

quite far from true Lorentzians. A failure to account for lineshape 
distortions leads to residual deviations (especially in the vicinity of 
strong lines) which look as false spectral peaks with surprisingly large 
intensities.

The factors which affect the shapes of spectral peaks are: (i) 
field inhomogeneity (shimming), (ii) FID weighting prior to DFT 
(weighed profiles such as Voight’s), (iii) the discrepancy between DFT 
and true lineshapes (DFT distortion) and, to a surprisingly large extent, 
(iv) the convolution of many unresolved quantum transitions under the 
same spectral peak (transitions banding). To account for all these 
factors, we use a master lineshape function which is sufficiently more 
general than a pure Lorentzian, but nevertheless involves only a limited 
number of additional lineshape parameters.

We have also found it extremely important to minimize (fit) not 
the square of the difference between the experimental spectrum and a 
theoretical one, but rather the variation of the said difference and of its 
first and second derivatives (the smooth-residue principle). Otherwise, 
one ends up with residuals full of large and unrealistic ‘bumps’.

Finally, the fitting itself cannot involve simultaneously all the 
parameters of all the peaks present in the spectrum – in many spectra, 
that would imply minimization of a function of up to several thousands 
of variables, a feat which is beyond the capability of any computer 
system. There are only two viable approaches: (i) peak-by-peak removal

and (ii) a sliding window approach where only 1-3 peaks at a time are 
fitted. Even so, execution times may be a problem and special 
precautions need to be taken to keep them under control.

Once a spectrum has been decomposed into a set of 
generalized-shape spectral peaks and a reasonably smooth residue 
(baseline), any further data evaluation (integration, molecular structure 
verification/elucidation, factor analysis) is best carried out digitally on 
the peaks list rather than graphically on the spectrum itself. All 
meaningful information is in fact comprised in the peaks list, even 
though the exact shapes of the peaks may be difficult to interpret.

The GSD algorithm is so far limited to 1D spectra, but it can be
certainly extended to any number of dimensions.

Auxiliary algorithms: robust noise estimate (left) and mean linewidth estimate (right)

Preparatory steps: numeric derivatives (left) and special points mark-up (right)

More preparatory steps: boxing-in the peaks

Final GSD Outputs:

• List of peaks,

• Synthethic spectrum,

• Residuals

Exploitation example: Resolution enhancement with uniform linewiths

Exploitation example: Stick spectrum and its integral
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