
The Q-FACTOR FUNCTIONAL q(ϕϕϕϕ,ττττ){S}
Exploiting the insight gained with eDISPA, we have designed a real-valued functional, the quality factor q(ϕ,τ), 

which acts on a spectrum S corrected by the given phasing parameters ϕ and τ, and attains a maximum in close 

vicinity of the correct phasing values. To develop the functional, we have tested parameterized families of 

functionals on a large number of randomly simulated spectra. Here we will avoid the details of this process and 

concentrate on the final formula, comment its parameters and illustrate its  performance.

Suppose that the spectrum S is an array of N complex values yk, k = 1,2,…,N and denote as Yk = Rk+jIk the 

corresponding values after a normalization and phase correction with parameters (ϕ,τ). Explicitly,

Yk = (yk/ymax) * exp[-j(ϕ+2πτ(k-N)/N)],

with ϕ expressed in radians and ymax the maximum of all |yk| (notice that phase correction does not change the 

modulus of any of the data points). The application of the functional q(ϕ,τ) to S is then caried out according to the 

integral-type formula

q ≡≡≡≡ q(ϕ,τ){S} = ∑k’ |Yk|
a * Rk

b * exp(-w(2k-N)/N),

where the summation index k’ extends only over those points for which |yk’|/ymax ≥ c.

The parameters a, b, c and w specify the type of the q-factor functional. When b = 1 and a = c = w = 0, the formula 

reduces to the plain sum (integral) of the real parts of all data points – a functional whose optimization sometimes 

gives reasonable values for ϕ and τ, but fails just as often.

A major step towards better reliability consists in increasing the value of a. This amounts to weighing each point 

with a power of its own modulus and thus reducing sensitivity to baseline distortions and, more importantly, 

giving the EDISPA lobes a more elongated, ellipsoidal shape which sharpens the maximum of q. After empirical 

testing, we have settled for a = 2.

The sensitivity to baseline distortions (due in part to known FFT artifacts associated with t0) is further suppressed 

by setting the relative intensity threshold c to a value such as c = 0.1 (lower if the spectrum contains only one 

intense and narrow multiplet, plus some very weak lines). This has also a beneficial effect on reliability (though 

not as marked as that of parameter a), and it dramatically improves computing efficiency since only a fraction of 

data points needs to be treated. 

The offset-weighing coefficient w suppresses false maxima of q in cases of large τ values. By giving a larger 

weight to the central portions of the spectrum, it makes it possible to resolve situations when the lines on both 

extremes of the spectrum are nearly in phase, while those in the center are mis-phased. The fact that w attenuates 

the spectral wings is not deleterious, since noise is attenuated as well. We have settled for w = 2.

STANDARD PHASING PROCEDURES
The majority of phasing procedures, both manual or automatic, require the selection of two sufficiently distant 

spectral peaks/multiplets centered in relatively narrow spectral windows Despite the use of a variety of algorithms, 

all such procedures in essence estimate the complex phase of these two selected signals or signal groups and 

extrapolate them linearly over the whole spectrum. Because they use a limited subset of available data points, 

these methods are overly sensitive to limited digital resolution, experimental noise, and spectral artifacts. They are 

best suited for manual phasing since an  experienced operator is often capable to partially compensate their 

drawbacks. What we are looking for, however, is a stable procedure based on noise-insensitive spectral integrals 

and suitable for automated black-box implementation.

Classical DISPA
DISPA (Dispersion-Absorption) plots were introduced in 1978 and employed to analyze the shapes and phases of 

NMR and ESR spectral lines. They show each complex data point of a spectrum in the Cartesian plane of 

complex numbers, disregarding its frequency offset.

Figure 1. Classical DISPA plots

Given a complex Lorentzian line (left; real part is red,  

imaginary part green), its DISPA plot (right, red trace) 

is always a circle, whose orientation makes it possible 

to read out the line’s phase angle (in this case, -45o). If 

the line were properly shaped, its DISPA plot would 

coincide with the thin gray circle.

EXTENSION to HR-NMR SPECTRA
A HR-NMR spectrum hardly ever contains just one line, but that is no obstacle to plotting the data points in the 

Cartesian complex numbers diagram. Fig.2 shows simulated examples of such extended DISPA (eDISPA) plots. 

What is interesting is that while variations in the receiver phase (better known as ϕ0) simply rotate the pattern, any 

linear phase variation proportional to frequency offset (ϕ1) results in a proportional azimuthal spread of the ‘lobes’

corresponding to individual spectral lines. A phased spectrum with ϕ0 = ϕ1 = 0 exhibits the most closely packed 

eDISPA plot, with all the lobes pointing to the right. This holds even when the spectral lines are not exactly 

Lorentzian; in this case the lobes are not perfectly circular, but the statement is still valid.

Note: from now on, we will not use Φ1 but the closely related, and physically more justified, dimensionless ratio τ = t0/Dw, where Dw is the 

dwell time between consecutive FID data points and t0 is the equivalent delay between the true start of the FID and the first data point 

(including filter effects). The ϕ1 variation over the the whole spectral width is then equal to 2πτ. Furthermore, we will define Φ0 as the 

complex phase of any data points located at the carrier offset (normally the center of the spectral window).

Figure 2. eDISPA plots of multi-line spectra

The normalized eDISPA plots on the right correspond to 

the composite-line spectra S on the left. The unphased top 

spectrum has ϕ0 = 45o and τ = 0.5. The bottom spectrum 

contains exactly the same spectral lines but is perfectly 

phased, with ϕ0 = 0 and τ = 0.

Notice the DISPA curve of the partially resolved doublet 

(two 5 Hz wide lines set 10 Hz apart) and the scarce 

digitization of the two lobes corresponding to the two 

sharper (2 Hz) singlets (the digital resolution of these 

simulated spectra is 0.5 Hz).

When the two phasing parameters ϕ0 and τ vary, each 

point in the eDISPA plot undergoes a rotation around the 

origin. While ϕ0 rotates the whole figure, increasing τ

causes a progressive spread of the individual ‘lobes’. For  

large values of τ, the spread can exceed 360o, giving rise 

to a false, partial ‘refocusing’ of the individual lobes.

INTRODUCTION
We present an extension of DISPA plots in which the in-phase component of a spectrum is plotted against its out-of-phase component, disregarding the frequency coordinate. Starting from such plots, it is possible to derive real-valued 

functionals Q(ϕ0,ϕ1){S} of the spectra S which, when evaluated as functions of the two phase correction angles, exhibit a maximum at the correct phase-correction values. Standard optimisation of Q(ϕ0,ϕ1){S} amounts to a novel 

automatic phase correction algorithm which is completely objective and void of any a-priori discrimination between experimental data points. Being of a particular integral transform type, it is also surprisingly insensitive to the 

experimental noise (S/N ratio) and to baseline imperfections, allowing reliable and objective automatic phasing of spectra which would defy manual procedures.
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SEARCH FOR MAXIMUM and UNIQUENESS
Considering the smoothness of the function q(ϕ,τ){S}, the search for its maxima does not represent any problem. 

It is sufficient to evaluate it on a discrete grid, varying ϕ by steps of 10o from 0 to 360o values and τ by steps of 0.1 

from -1 to 3 (higher values of τ indicate unusual acquisition settings which should be known; in such cases, it is  

reccomandable to carry out a simple preliminary correction before applying eDISPA). Thereafter, intermediate 

values of q(ϕ,τ){S} and its maxima, can be  found quite accurately by quadratic interpolation.

It may happen that q(ϕ,τ){S} has two or three maxima of comparable magnitude. This usually indicates the actual 

presence of multiple acceptable solutions. In such cases, the possible solutions might be subject to a human 

operator to allow for preferences based on ‘external’ considerations (such as the employed acquisition delay).

CONCLUSIONS
The integral eDISPA automatic phasing method is very new and can be certainly still refined. Though it is not 

foolproof, it already works remarkably well – better, we believe, than most experienced human operators. Its 

success is undoubtedly due to the combination of physical insight implicit in the extended DISPA plots with an  

integral-type evaluation procedure which confers it a remarkable insensitivity to experimental noise.

The method is now being incorporated into the MestreNova software package and further improvements are 

expected once  a sufficiently large volume of practical experiences gets accumulated.

The eDISPA ALGORITHM
To better explain the proposed eDISPA q-factor method, consider again the unphased spectrum of Figure 2. In 

Figure 3 we plot two functions η(τ) and Φ(τ) obtained in this way: for each τ, we compute q(ϕ,τ)S for an array of 

values ϕ (since the variations are quite smooth, 5o or 10o steps are quite sufficient). From these, we estimate the 

location Φ(τ) of the maximum of q(ϕ,τ){S} with respect to ϕ and denote its value as Q(τ). This defines two new 

functions, and Q(τ) and Φ(τ). To facilitate human inspection, the shown function η(τ) is a normalized 4th-power 

of the variation index of Q(τ), i.e., η(τ) = κ([Q(τ)-min(Q(τ))]/[max(Q(τ))-min(Q(τ))])^4, with the  coefficient κ

chosen to be 360, in order to make the vertical range of η(τ) compatible with that of Φ(τ).

Given an experimental spectrum S, once the functions η(τ) and Φ(τ) have been computed, the optimal  phasing 

parameter τopt corresponds to the absolute maximum of η(τ) and ϕopt = Φ(τopt).

Figure 3. Automatic phasing via the eDISPA q-factor

On the left are simulated unphased spectra, in the center are the graphs of η(τ) and Φ(τ) described above, and on 

the right are the spectra phased with the computed optimal parameters (ϕopt,τopt). The top row spectrum is the 

same as in Fig.2 (top), generated with τ = 0.5 and ϕ = 45o. Notice the false local maximum of η(τ), due to the fact 

that the spectrum has so few lines. The middle row shows the same spectrum simulated with τ = 2.5 and ϕ = 50o.

The final result is again correct, even though even an experienced operator might get tempted to search the 

solution at much lower τ values (particularly considering the presence of the t0-related baseline artifact). Finally, 

the bottom row shows the same situation, but with the addition of a considerable amount of experimental noise to 

which the method is clearly quite resistant, undoubtedly due to the fact that it is based on spectral integrals rather 

than any local features.
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eDISPA PHASING BLACK-BOX
Figure 4. The eDISPA algorithm has been made into a black-box phasing procedure (spectrum-in/spectrum-out). 

We show here just one result of its application to a rather difficult case (unbalanced line distribution, τ = 2.3, very 

bad baseline, bad S/N ratio). Note that in this case, the eDISPA plot looks like it might have a τ of almost 0 

(wrong) and ϕ of about 60o (correct). Yet our algorithm is no fool … (thanks, in this case, to the w coefficient).
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