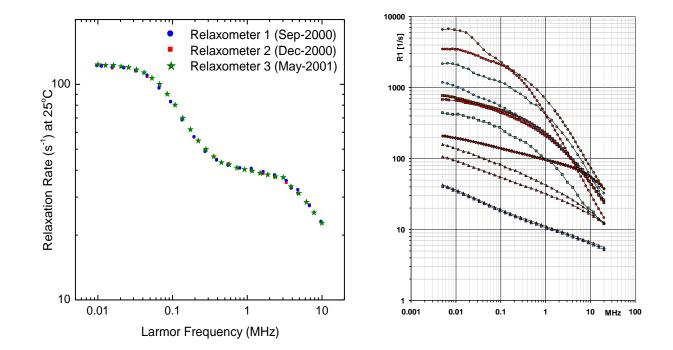
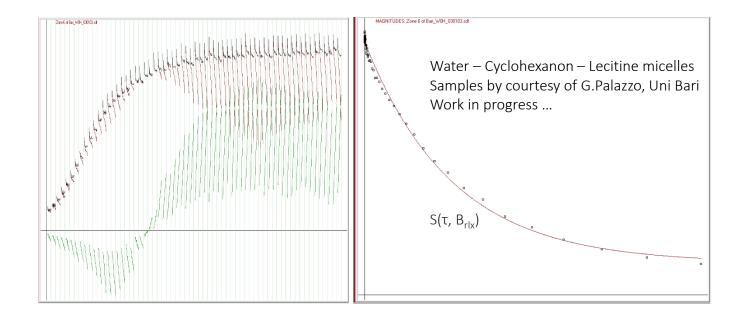

Stanislav Sykora, Ester Maria Vasini

Extra Byte snc


FIELD CYCLING RELAXOMETRY OF POLYDISPERSED SAMPLES: SOME SPECIAL ASPECTS

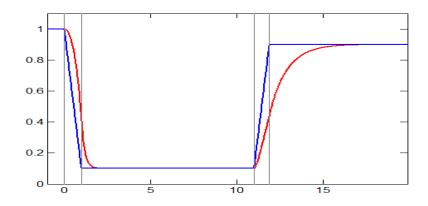
DOI of this document: 10.3247/SL7Nmr19.003

Field-Cycling NMR (**FFC** or **sample-shuffling**) is great at measuring NMRD profiles of <u>single-component</u> samples



By single-component I will mean that the $S(\tau, B_{rlx})$ are, within experimental errors, <u>mono-exponential</u> FC-NMR is also great at measuring <u>single-component samples</u> whose NMRD profiles are composite (<u>multiple relaxation paths</u>)

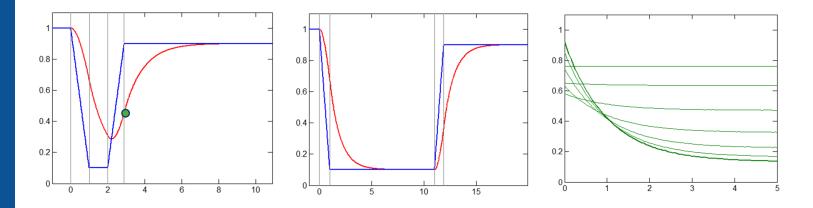
What about FC of multi-component samples?


When we intend only a **small number k of discrete components** that are distinguishable in the decays $S(\tau, B_{rlx})$, then this is not really a new idea. Yet it is **a bit problematic** and quite **time consuming**, so it is **rarely done**.

Why is it problematic (pardon, ... challenging)? Part I

First, a doubt:

During the FC experiment, the sample is subject to crazy magnetic field rides. Can we be **really sure** that the measured relaxation rates are the correct ones, corresponding just to the specified relaxation field B_{rlx}?



The answer is affirmative: under relatively broad assumptions, the measured values of $R_k(B_{rlx})$ are correct, regardless of what happened to the field before and after the nominal relaxation period. Amazing.

Why is it challenging? Part II

Second, a certainty:

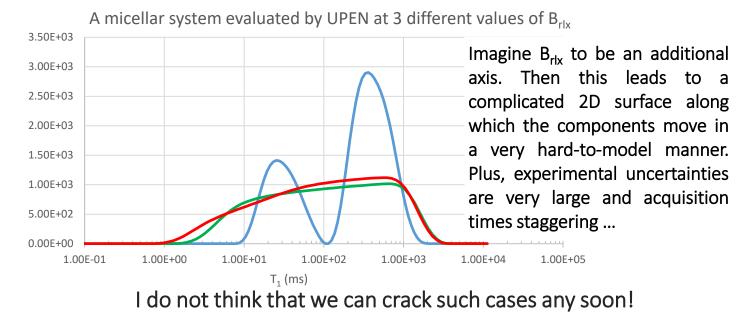
The magnetization of the k-th component $S_k(\tau, B_{rlx})$ evolves during acquisition of the signal $S(\tau, B_{rlx})$ in a way that <u>does depend</u> upon the magnetic field switching waveforms, as well as on the component's specific NMRD profile.

It follows that the apparent weights W_k of the individual components of the $S(\tau, B_{rlx})$ curve depend on the field-switching waveforms and thus on B_{rlx} .

A little bit of luck

Fortunately, we were able to derive a closed formula which makes it possible to correct the component weights, provided that one knows their NMRD profiles $R_k(B_{rlx})$, and carries out a prior calibration of the field-switching waveforms.

Conclusions We have developed a differential master pursuit equation which describes the evolution of longitudinal nuclear magnetization in varying magnetic fields, such as those present in FC-NMR. We have also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also coded an Utility to numerically integrate this equation for even the most general cases. Mere also code also


Note: the corrections are not needed when, at any magnetic field value traversed during the switching intervals, the T_1 values of a component are a few times longer than the switching times.

Workflow for FC of multi-component samples

- Pre-calibrate your magnetic field-switching waveforms for any field «jump» to be useed. Demanding, but yes, it can be done.
- Measure the experimental relaxation curve S(τ, B_{rlx}) at a series of field values covering the full range of fields that will be traversed during field switching intervals.
- At each value of B_{rlx} , decompose the $S(\tau, B_{rlx})$ curve by whatever means - into its discrete components, thus obtaining the separate NMRD profiles $R_k(B_{rlx})$.
- Correct the weight W_k of each component by applying the known formula.

The Next and Really Scary Thing!

What about samples exhibiting a continuous distribution of R₁ rates?

Even if ILT were much better behaved than it is, the complexity intrinsic in a continuous distribution of components, each of them with a different NMRD profile, potentially with multiple and distinct relaxation paths, exceeds the information content of FC.

Perhaps with new pulse sequences, acquisition techniques, ... and much patience

Thank you all for your attention!

Acknowledgement This work is part of a project supported by Mestrelab Research S.L.

DOI of this document: 10.3247/SL7Nmr19.003