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Although it has been known for some time'? that
vibrational Raman bands are sensitive to the molecular
reorientation in liquids, dense gases, and certain types
of solids, it has not been quite clear whether and to
which extent would other broadening mechanisms
interfere with the determination of the tensor reorien-
tation correlation function x:(r) from Raman data.

About a year ago I developed* an evaluation method
which leads to a reliable determination of x.(r) under
very general circumstances. A practically identical
method has been presented independently by Bartoli
and Litovitz® and used in their recent study of a number
of liquids. Because of this important experimental
confirmation of the validity of the method, T would like
to make a short remark on those of my results which
either have still not been published or which, in my
opinion, have not been stressed enough by other authors.

The method can be described as follows. Consider a
Raman band connected with the vibrational transition
r—s and denote as /,''(w) and I,+(w) its intensity
profiles measured with parallel and crossed polarizers,
respectively. Write 1,0=1,,! — (4/3) I,,+ and normalize
both I,.*(w) and I.,+(w) so that

(1

where n(w) =[ 14w/ (w,—w) T, w. being the excitation
frequency and w,, the frequency of the vibrational
transition (in most cases 7 may be substituted by unity).
The reorientation correlation function x,™(7) for the
anisotropic part of the transition polarizability tensor
A7 is then given by

xr' ()= [ () Lt (o) explion)do/Kn(r), (2)

+00
L0+ (w)n{w)de=1,

where
(3)

The validity of Eq. (2) is based on these assumptions:
(a) Raman scattering is incoherent (see Ref. 5),
(b) the vibration-rotation interaction is sufficiently
weak, (c) the statistical cross correlation between the
reorientation process and any scalar broadening mech-
anism is negligible, and (d) the shape fluctuations of
the polarizability tensor do not contribute significantly
to the width of the band.

It has been shown**® that the above method is not

o
Krs(7)=/ 7(0) 2 (w) exp(iwr)dw.

—00

sensitive to the presence of other broadening mecha-
nisms such as the intra- and intermolecular vibrational
energy transfer, the adiabatic vibrational frequency
shifts® (VFS), and the translational diffusion.” The
invariance of Eq. (2) with respect to VFS is of enor-
mous importance since even considerable shifts and
splittings of the band do not affect the results, provided
(as is often the case) they are not accompanied by any
substantial variation of A™. Another pleasant feature
of Eq. (2) is its insensitivity to the choice of the center
of the band (i.e., the frequency origin).

It is of some interest to notice the structuret of K,,:

K,o(1) = V(1) ®rs (1) D(7) exp(—iAr), (4)
where V., comprises the vibrational -energy transfer
and can be approximated by the formula V,.(s)=
exp(— |7 |/7,) exp(~ |7 |/7), 7: being the mean
lifetime of the molecule in the ith vibrational state,
®,, is the Fourier transform of the density function of
the adiabatic vibrational frequency shifts, D involves
the diffusion effects,” and A is the error in the estimated
frequency of the center of the band.

Combining Raman data with the ir evidence one
can arrive (in principle) at the vector reorientation
correlation function x1(r) characterizing the reorien-
tation of the transition dipole moment dr¢. Since the
scalar relaxation processes are identical for ir and
Raman,

+o0
3 (1) = expli(An—Au)7] [ Lt ()

X exp(iwr)dw/K,.(r), (5)

where I,,7(w) is the normalized ir band shape and
(Agp—Ajs) is the error in the mutual fit of the ir and
Raman frequency scales (it is rather difficult—though
not impossible—to eliminate this instrumental error).

My final remark regards the application of Eq. (2)
to the molecules which undergo internal rotations.
In this case there arise four possibilities: (1) The band
belongs to a long-range torsional motion, The vibration-
rotation interaction is then usually rather strong so
that the results are not reliable. (2) The band is a
heterogeneous mixture of several bands belonging to
different conformers. In this case nothing can be done
unless the transition polarizability tensors are nearly
identical. (3) The band can be assigned to a single
conformer. x,*(7) then describes the reorientation
properties of this particular species. (4) The band can
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be characterized as a localized vibration of a rigid
molecular fragment. The function x,"(r) then refers
to the reorientation of this single fragment. This is a
most inviting possibility especially in connection with
the study of large molecules and polymers.

* This research was supported by the National Science Founda-
tion and by the U.S. Office of Naval Research.
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A general calculation of paramagnetic susceptibilities
has been carried out for d*ions in octahedral fields using
complete crystal field energy level calculations and
limited spin—orbit interaction. The molar susceptibility
x was obtained by direct Boltzmann averaging of the
magnetic moments u;= —dE;/3H, evaluated by numeri-
cal differentiation, where E; is the value of the ith
energy level and H is the magnitude of the magnetic
field.'* Spin—orbit energies must be included to obtain
the necessary precision for the E;. The effective mag-
netic moment per; is determined in units of Bohr
magnetons up by pers= (kTx/Nug®)'?, where k is
Boltzmann’s constant, N is Avogadro’s number, and T
is the temperature.? Since the averaging is not simplified
by assumptions regarding the arrangements of energy
levels, the calculated susceptibilities are restricted only
by approximations employed in the energy calculations.
Approximations in this calculation are the use of strict
cubic symmetry, neglect of non-d character in the state
vectors, neglect of spin-orbit interaction between
multiplets, and the evaluation of Zeeman matrices
over lower crystal field states. With this approach,
x and wetr can be calculated for all values of the crystal
field strength A=10Dgq, including regions where the
usual approximations are not valid.!

Matrices of a Hamiltonian consisting of crystal field,
electrostatic, and spin-orbit interactions were con-
structed on the complete d* free ion .S, L, J basis by the
methods of Racah and Judd.*® Formulas for the three-7
and six-j symbols were taken from Rotenberg et al., and
reduced matrix elements were obtained from Nielson
and Koster.”® The matrix elements were expressed in
terms of the Racah parameters 4, B, C, the single
electron spin—orbit parameter {, and the crystal field
strength A, Matrices of the Zeeman term ugH - (kL ¢.S)
where £ is the orbital reduction factor, were constructed
and diagonalized over eigenvectors of the Hamiltonian

corresponding to eigenvalues less than 11 000 K above
the ground level.’ Reduction with respect to the Cg
double group produced matrices no larger than seven
by seven.

Energy levels within 2000 K of the ground level and
the corresponding magnetic moment are plotted against
A in Fig. 1. The values used for B, C, and { were taken
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Fic. 1. Effective magnetic moment and low-lying energy
levels of a d* ion in an octahedral crystal field as functions of the
crystal field strength A. Parameters B, C, and ¢ have Mn?3t
values taken from Refs. 2 and 9, and the orbital reduction param-
feter 1Ds £=1.0. Integers along the upper left axis are the J values

or 5.
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