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Abstract

The analysis of high resolution NMR spectra of coupled nuclear systems is often a very tedious
process. The methods used to solve this task have so far always been based on frequencies (and
sometimes also intensities) of selected and well assigned lines. In this paper we present a broad
class of methods which not only do not require any interpretation of experimental lines but do not
even require any lines should be individually distinguishable. The first experiences with some of
these methods are reported. They lead to quite optimistic conclusions regarding the possibility of
full automation of the problem in question. The algorithms used consist in (i) converting the
spectrum, however complicated, into a limited set of real numbers by means of suitable integral
transforms, and (ii) fitting these numbers by means of the usual iterative least-square algorithm. The
very simplicity of this idea makes it possible to apply the method with equal ease to the analysis of
any complicated function (spectra) defined by a limited number of parameters.
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The analysis of high resolution NMR spectra of coupled nuclear systems is often
a very tedious process. The methods used to solve this task have so far always been
based on the frequencies (and sometimes also intensities) of selected and well assigned
lines. In this paper we present a broad class of methods which not only do not require
any interpretation of experimental lines but do not evenrequire thatany lines should
be individually distinguishable. The first experiences with some of these methods
are reported. They lead to quite optimistic conclusions regarding the possibility of
full automation of the problem in question. The algorithms used consist in (i) con-
verting the spectrum, however complicated, into a limited set of real numbers by
means of suitable integral transforms, and (ii) fitting these numbers by means of the
usual iterative least-square algorithm. The very simplicity of this idea makes it
possible to apply the method with equal ease to the analysis of any complicated
functions (spectra) defined by a limited number of parameters.

I. INTRODUCTION

The computer analysis of high-resolution NMR spectra of coupled nuclear systems
often represents a tedious and time-consuming problem which has rarely any scientific
value in itself. A well established approach to this problem (/) consists in (i) proposing
a set of starting spectral parameters (by spectral parameters we will mean
chemical shifts, indirect and/or direct coupling constants, etc.), (ii) calculating the
theoretical spectrum, (iii) interpreting as many experimental lines as possible in terms
of the theoretical transitions, and (iv) adjusting iteratively the starting parameters so as

to minimize the quantity
42 =3 (of — o), [1]

e

where & is the selected subset of experimental lines, w$* are their experimental fre-
quencies, and w}" are the corresponding theoretical frequencies.
Although this method is widely used, it has several practical drawbacks.

(i) The interpretation of experimental lines is time consuming, tedious, and very
vulnerable to error, expecially if the density of lines exceeds certain limits or when the
estimated parameters differ from the true ones so much that there is little similarity
between the theoretical and the experimental spectra.

(ii) The initial estimate of the parameters requires usually a great deal of prior
knowledge and experience. Sometimes even these are of little help, particularly for
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spectra from oriented species where it is often virtually impossible to make sufficiently
precise predictions of the direct coupling constants.

(iii) In many cases, it is difficult to select a sufficient number of experimental lines
each of which would correspond to a single transition. This situation arises regularly
in large spin systems where any apparently single experimental line is usually composed
of a number of closely packed theoretical transitions (consider that there are 792 tran-
sitions in a general six-spin-1/2 system and 11,440 transitions in a general eight-spin-1/2
system). The line overlap may also be due to a line-broadening process which is inherent
to the particular system and cannot be avoided.

(iv) It is well known (2, 3) that the transition frequencies alone do not always
specify the spectral parameters uniquely ; however, the solution is unique when both the
frequencies and the intensities of the transitions are considered.

(v) In some special cases the spectrum may be insensitive to a certain spectral
parameter or to a combination of parameters. Considering the experimental noise,
these cases lead to a continuous range of solutions. Situations of this kind are not easy
to detect unless a complete error analysis is performed.

The disadvantages listed above prompted many NMR spectroscopists to think
about alternative methods of analyzing the spectra. Simple modifications, such as
inclusion of transition intensities in the least-squares algorithm (4) may help in special
cases but their general value seems rather limited. Other approaches appearing under
the general heading “automatic analysis” (5), aim at including in the program as much
specific knowledge of the NMR problem as possible; for example, the energy-level
diagram, repeated spacing, and intensity flow rules. The general applicability of these
methods, however, has not been established and remains somewhat questionable.

In this paper we will sketch an alternative approach to the analysis of NMR (and
possibly also EPR) spectra which avoids most of the obstacles listed above. The respec-
tive programs as well as the algorithm itself are still in development, but the results we
have obtained so far are encouraging enough to warrant a rather detailed report.

Let us consider what are the prerequisites of any iterative analysis of a spectrum.
First, a quantity is needed which will summarize within a single number 4 the difference
between the experimental spectrum and its theoretical counterpart. Secondly, a local
minimum of 4 (or 4%) must be found by iterative modification of the initial parameters
defining the theoretical spectrum. The adjusted parameters are then tentatively accepted
as a solution and a direct comparison of the complete theoretical and experimental
spectra is carried out. In the common approach 4 is defined by Eq. [1], but we will see
that there is a great freedom in the choice of this quantity and any particular choice
amounts to a distinct method with its own advantages and disadvantages.

The most general definition of 4 compatible with the least square algorithm is

In

42 =3 [Fill(o)} — F{lsn(@)}], [2]

k=1

where I,(w) and I,;,(w) are the experimental and theoretical spectra, respectively, and
Fk{l(w)} is a functional, i.e., a mapping which assigns a real number # ,{g(w)} to any
function g(w). In other words, the spectrum I(w) is characterized by a limited set of n
real numbers and the aim is to fit theoretically the set of such numbers derived from
the experimental spectrum.
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In order to demonstrate the profound relation between the definition of 4 and the
basic features of the fitting algorithm, we will describe a method which is itself quite
promising, although we have not applied it to any extensive checks as yet. A spectrum
may be considered as a continuous and absolutely integrable function I(w), where I
is the intensity and w is the frequency. As such, any spectrum belongs to many of the
classical functional spaces. One also feels intuitively that the quantity 4 should possess
many of the properties of a metric in a functional space including all possible spectra.
Vice versa, any metric in such a functional space defines a suitable 4. Consider, for
example, the most common metric function related to the space of quadratically integ-
rable functions, i.e.,

£ = [ (@)~ In(@)F do. (3]

This definition has the advantage that no interpretation of experimental line is necessary
in order to evaluate 4. On the other hand, a new problem arises. Suppose that the spec-
trum consists of a set of very sharp lines and consider 4 as a function of the spectral
parameters. A then attains its highest value whenever there is no coincidence at all
between the experimental and theoretical lines (i.e., almost everywhere). At those
points where any two or more lines coincide, there will be a narrow ‘‘hole” in the 4-
surface. Among the large number of such holes, there will also be the one corresponding
to the true solution. To find this minimum by any iterative program is evidently nearly
impossible because of both the density of the minima and their narrowness.

The above considerations lead to the following requirements for an optimal method.
First, 4 should not depend on the details of the computations leading to the theoretical
(simulated) spectra. Once this condition is satisfied, the method acquires generality (it
can be applied to any spectroscopy, not just NMR) and the bothersome interpretation
of the experimental lines is completely eliminated. Second, the definition of 4 must be
applicable to the stick spectra as well as to the continuous spectra with extensive tran-
sition overlap. Third, 4 should be a very smooth function of the parameters with rather
broad minima. This means that it should reflect principally the global features of the
spectrum (this is analogous to the way a spectroscopist’s eye works when comparing
two spectra at a single glance). The smoothness also implies that the local minima of 4
are broad and can be easily located by computer even if the starting parameters are
quite wrong.

In order to be sure that A of Eq. [2] satisfies the above requirements, it is sufficient
to choose the functionals % in such a way that they themselves satisfy the same re-
quirements. In the following sections we will discuss some of the methods which fit
into this general category and will demonstrate the applicability of these methods to a
broad range of test cases. We will also demonstrate additional problems that may arise,
both as mathematical artifacts of the particular choice of the functionals and as a result
of real properties of the NMR spectra.

II. SPECIAL CLASSES OF FUNCTIONALS
First, we must determine which sets of functionals are best suited for our purposes.
Since any single-number characteristic of a spectrum is a functional, the freedom of
choice is quite overwhelming. In principle, the problem could be analyzed by purely
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theoretical means. This way, however, was so complex and cumbersome that we
abandoned it. A more viable approach was to find a few general criteria limiting the
type of the functionals and then to proceed by trial and error selecting each time a differ-
ent set of functionals and applying it to a number of typical spectra. An important
factor in choosing the functional is of course also their mathematical simplicity.

In this study we have limited ourselves to linear functionals. A functional #{-} is
linear if it satisfies the relation

Flaf(w) + bg(w)} = aF{ f(w)} + bF{g(w)} [4]

for any two functions f(w) and g(w) and for any real numbers a and b.

The linear functionals present some numerical advantages. Thus when a spectrum
is composed of a number of transitions, the corresponding functional becomes a sum
of terms each of which is related to just one transition. This makes it possible to compute
the functionals without actually storing all the transition frequencies and intensities.
On the other hand, it is quite possible that suitable nonlinear functionals might lead to
a better estimation of the spectral parameters, especially if the experimental spectra are
burdened by noise, distorted by saturation, incomplete, etc.

A very general class of linear functionals which are continuous and smooth functions
of the spectral parameters are the integral transforms defined as

+a

Fll@)} = [ wo) I (@)do, [5]
where w(w) is a smooth function of w. A set B" ={W(w); k=1, 2, .. ., n} of functions
wi(w) then defines the set of functionals {#, =%, ;k=1,2,.. ., n}. The set B will be
called the basis of the integral transforms adopted.

It is evident that the integral transforms still offer an extraordinary freedom of choice
since any distinct set of » reasonably smooth functions of @ defines a distinct basis.

Another restriction is that the basis should consist of linearly independent functions.
A linear relationship between the functions w,(w) would lead to a linear relationship
between the corresponding transforms #,(k =1, 2, . . ., n) which would then contain
less information than if the function w(w) were linearly independent.

The choice of linearly independent functions presents no mathematical problems,
but itis well known that for large n it may present considerable numerical problems due
to the limited precision of numerical calculations. An elegant way of assuring linear
independence consists in choosing a set of mutually orthogonal functions, the ortho-
gonality being defined by the equation

E+o0

[ wi@)wi@)do =0 [6]
for any i #j. Although this may be asking too much for some purposes (we will see
later that nonorthogonal bases are often quite useful), there are additional reasons for
orthogonal bases. As shown in Appendix A, Eq. [AS5], the transforms are statistically
independent if and only if the basis is orthogonal. Statistical independence simplifies the
treatment of error propagation and, on the average, tends to reduce the errors in the
final spectral parameters.
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It is also useful to have the functions w, quadratically normalized. The variances

Vy of the respective transforms due to the experimental noise are (see Appendix A)

4o

Vi=p* [ wi(w)do, [7]

-0
where p is the rms of the noise. When the functions w,(w) are normalized, then all the
expected variances are the same. This means that in such a case all the transforms
should be given the same weight. Moreover, the residual A4 left after having adjusted
the spectral parameters can be compared with the rms of the noise in order to see whether
the minimum reached is physically acceptable (4% ~ np?), or not (4% > np?).

A question concerning the uniqueness of the solution now presents itself. Once again,
we can expect only a limited help from the theory since the complexity of the problem
makes it nearly intractable. There are two lines of reasoning that may put this aspect
of the problem on a somewhat firmer ground. First, suppose that the set {w,; k=1, 2,
...} is an orthonormal and complete basis in the Hilbert space of the quadratically
integrable functions. By the completeness theorem, the deviation 4 defined by Eq. [2]
is then identical with that one defined by Eq. [3]. The uniqueness of the latter is assured
by the fact that it vanishes only if the experimental and theoretical spectra are exactly
identical and by a uniqueness theorem due to Kummer (3). A complete basis necessarily
consists of an infinite number of elements. Since, however, the property of uniqueness
either is there or not, there must exist a critical number of transforms beyond which the
solution is always unique. Second, we can argue that the set of all NMR spectra of a
given type (i.e. AB, A,B;, ABC, ABCD,, etc.) forms a very “thin” finite-dimensional
hyper-surface in the infinite-dimensional Hilbert space of all quadratically integrable
functions. Choosing a basis of n functions unrelated in any explicit way to the Hamil-
tonian, it is obvious that when n equals or exceeds the number of spectral parameters,
the probability of each of the transforms having the same value for two different sets
of the parameters must be very small. In other words, even though no uniqueness
theorem is available, we do expect multiplicity of solutions only when there are some
physical grounds for it.

Somewhat more bothersome is the existence of spurious local minima of the 4-
function. Here we refer to the local minima associated with the chosen basis rather than
those due to the physical similarity of spectra generated from different sets of spectral
parameters. In general, the orthogonal bases, which for large n necessarily include
rapidly oscillating functions, are more likely to produce false minima than non-
orthogonal bases composed of nonoscillatory functions. This is one reason why non-
orthogonal bases may be preferable whenever there is a possibility that the starting
spectral parameters might be quite wrong.

We considered several bases during different stages of this work and these are
briefly discussed below.

(i) The Fourier Basis Over the Interval [a — 3d, a + 3d] (Fig. I(a))

Consider the complete, orthonormal set of functions {w(w); k=1, 2, .. ., =} such
that
wa (@) = (d[2)~"2cos [(In/d) (0 — a)]
wa (@) = (d2)~2sin [(In]d) (0 — a)]. [8]
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Any subset of n such functions may form a basis suitable for computer calculations. In
our case we have always used the first n consecutive functions. One might use, however,
the set {wg, Wk41, - - .» Wkt Where K is a positive integer. The higher functions, being
more oscillatory than the lower ones, are more sensitive to fine details of the spectra and
thus better suited for fine refinement of the spectral parameters rather than for a rough
initial fit. As far as mathematical simplicity is considered, bases of this type do not lead
to any numerical problems (see Appendix B). From the practical point of view, we

FiG. 1. Some of the bases used (only 5 functions are shown): (A) Fourier trigonometric functions,
(B) Hermitian functions, (C) moments, (D) Gaussian functions, (E) broken linear functions, and (F)
Lorentzian functions (delocalized basis).

should yet discuss the choice of the center @ and the width d of the interval; this we will
do in the next section.

(ii) The Hermitian Basis Over the Interval (—x, =) (Fig. 1(b))
In this basis the functions w(w) are defined as

wi(w) = (2*klan!/2) 12 exp [-3((@ — a)[2)’] Hi((w — a)/ ), 9]
k=0,1,2,. ..,

where H,(x) are the Hermitian polynomials, « is a scale parameter, and ais a center. As
before, these functions form a complete orthonormal set. We have generally used as a
basis the first n of them. They present no numerical problems for stick spectra, although
at nonzero linewidths the problems are considerable (Appendix B). As in the previous
case, we leave open the choice of the center a and the scale parameter . It is interesting
to notice that for very large k the Hermitian functions look very much like the trigono-
metric functions (compare Fig. 1(a) and (b)). Although the Hermitian basis was the first
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one we adopted, we realized later that, for the reasons just mentioned, the Fourier basis
is probably preferable.

(iii) The Gaussian Basis Over the Interval (—», ) (Fig. 1(d))
The normalized functions

wi(@) = (274(2k — D!Nax'/2)12 (0 — a)/2)* exp [H(@ — a)/2)*], [10]
k=0,1,2,...,

provide a complete set which is closely related to the Hermitian basis, but the functions
lack the sometimes undesirable oscillatory character. This was of course achieved
only at the price of losing the orthogonality of the functions.

(iv) The Set of Moments Over the Interval (a — d|2, a + d|2) (Fig. 1(c))
The functions

wi(@) = [k + D/d** (0 — a)ld), k=1,2,. .., [11]

form a normalized, complete set over the interval considered. They are nonorthogonal
but also completely nonoscillatory, and very easy to handle. A further advantage is
that they are related to the moments of the spectra which are well-known quantities.
Their principle disadvantage is that for high k, w,(®) is negligible anywhere except in the
immediate vicinity of the borders of the interval (@ — d/2, a + d/2). This is clearly un-
desirable and so only a limited number of these functions is of any use (we have generally
taken the first seven of them).

(v) The Delocalized Lorentzian Basis Over an Interval (a, b) (Fig. 1(f))

The definitions of all the above bases refer to a particular point, namely the center, or
origin, a. We will call such bases localized. An example of a delocalized basis might be

_ 211
wk(w)=3(w—mk,5v)=(Hai)m:l+[2(m5vm)k]}, k=1,2,...,n, [12]

where #(w, dv) is the quadratically normalized Lorentzian line of linewidth dv and
oy=a+(k—1)(b—a)(n—1). It is actually possible to show that for sufficiently
large n and Jv the deviation 4 defined by Eq. [2] using this basis is approximately equal
to the deviation 4 defined by Eq. [3].

(vi) The Broken Linear Functions (Fig. 1(e))

The nature of this basis is self-explanatory from Fig. 1. We have tried it at one point
in an unsuccessful attempt to increase the convergence rate.

ITI. A BRIEF DESCRIPTION OF THE PROGRAM USED
To carry out the iterative adjustment of the parameters, we used a variant of the
conventional least-square algorithm with damping. For each iteration, the transforms
and the derivatives of the transforms with respect to all the parameters are evaluated.
The derivatives were determined numerically. The transforms themselves were calcu-
lated as sums of contributions each arising from a single transition. The transition
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frequencies and intensities are read from cards (the experimental spectra) or generated
by a conventional program (the theoretical spectra).

Before the iterations are started, the center of gravity of the experimental spectrum
is determined and identified with the center parameter a of the localized bases. Some-
what more complicated is the determination of the width d of the basic interval in such
bases as Fourier, moments, or broken linear. The criterion is that the interval (a — d/2,
a + d/2) must just about comprise both the experimental and the theoretical spectrum.
Whenever this condition is too flagrantly violated (more than 209, discrepancy) during
the process of adjustment, the program interrupts the iterations, readjusts d, recalculates
the transforms for the experimental spectrum then re-starts the iterations. Similar
behavior has been programmed with regard to the scale parameter « in bases such as
Hermitian or Gaussian. Here the criterion is that the highest function employed should
attain its maximum (in absolute value) at the points which approximately coincide with
the points a — (d/2) and a + (d/2) of the previous case.

In the first trials we noticed a general tendency for the coupling constants to go to
completely unrealistic regions before the chemical shifts are at least roughly adjusted
and only afterwards to return. In order to remedy this undesirable effect, we introduced
optional constraints which force any desired parameter to stay within predetermined
bounds.

From what has been said in the preceeding section, the bases which are suitable for a
very fine refinement of the parameters are not optimal for a rough preadjustment.
Because of this, we developed a multistep (tandem) algorithm in which the parameters
are (i) preadjusted using a basis which includes the first seven moments plus a set of
nonoscillatory functions (in our case Gaussian) weighted in such a way as to reduce the
runaway tendency of the coupling constants (we also used kw, instead of the w of
Eq. [10]), (ii) refined using the Gaussian basis, and (ii) refined still further using the
Hermitian bases.

For our trial experiments we have not introduced weak coupling or symmetry
factoring of the Hamiltonian.

Since the program is still in development we will not attempt to describe it in more
detail. This will be done elsewhere in a specialized report.

1V. PRACTICAL EXAMPLES

The principal aim of this study was to check whether the algorithm described above
could be applied with success to cases with quite randomly generated starting parameters
At this stage we were not interested in the much easier problem of the refinement of a set
of almost accurate parameters.

We limited ourselves to 2-, 3-, and 4-spin systems. All the localized bases described
in Section II were used both separately and in tandem. In the majority of cases, however,
the three-step procedure described in Section III was adopted. The number of trans-
forms was arbitrarily set to 10 for the AB cases, 18 for the ABC cases, and 24 for the
ABCD cases. A number of trials with different numbers of transforms was also per-
formed. The algorithm did not seem to be very sensitive to this parameter.

Most of the experimental spectra were simulated on the computer. For the purposes
of this study we assumed zero linewidth (stick spectra). Given the nature of the method,
this can hardly have any bearing on the validity of our results.
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The approximate time required by the computer UNIVAC 1108 was 2, 10, and 100
seconds for fitting the AB-, ABC-, and ABCD-spectra, respectively.

(i) The AB-Type Spectra

An experimental spectrum was simulated using the parameters @ =-30 Hz,
o = 30 Hz, and J,5 = 15 Hz. For the starting parameters, all possible qualitatively
distinct combinations were considered (the w’s ranged from —2000 to 2000 Hz, the
J’s from 0 to 5000 Hz). In all these cases, the correct solution was found. The average
number of forward runs needed to find the solution was about 60.

(if) The ABC-Type Spectra

In this case both the starting parameters and the parameters used to simulate the ex-
perimental spectra were generated as independent random numbers lying between
—100 and +100 Hz for the chemical shifts and between —40 and +40 Hz for the coupling
constants. In 49 test cases, out of a total of 50, the program found a solution. Of the
solutions, 24 were identical with the parameter sets used to generate the experimental
spectra, and 25 differed from the latter by the sign of one or more coupling constant
(this, especially if combined with a small readjustment of the absolute values, often
leads to a nearly identical spectrum). The average number of forward runs needed was
about 85. In a variation of this test, the starting values of all the coupling constants were
put equal to zero. Within the bounds of statistical significance, this did not influence the
efficiency of the program.

It turned out, however, that very few of the above cases were really strongly coupled
systems. In order to get more experience with strongly coupled systems, we generated
two similar sets of test cases but this time the range for the chemical shifts was set equal
to —10 to +10 Hz while the range for the coupling constants was —10 to +10 Hz in the
first set and —20 to 20 Hz in the second set. Under these circumstances, the rate of
success decreased significantly (only about 709, of the solutions fitted the spectrum
either exactly or at least approximately; the percentage of exact solutions was about
409). Changes in bases, such as substituting the Hermitian basis by the Fourier basis
or increasing the number of transforms did not improve the performance.

The program was tentatively applied also to some ABC-spectra of oriented molecules.
The ranges of the randomly generated parameters were: —300 to +300 Hz for chemical
shifts, —1500 to 1500 Hz for direct coupling constants, and —20 to +20 Hz for indirect
coupling constants. The performance was about as good as in the strongly coupled
isotropic cases. Out of 12 examples, 5 were solved exactly, in 3 some of the direct coup-
ling constants switched signs and ended with an approximate fit of the spectrum, and
in 4 cases no solution was found (i.e. a local minimum without physical significance
was located).

(iii) The ABCD-Type Spectra

The tests were carried out in the same way as in the ABC case. The ranges of the ran-
domly generated parameters were —100 to +100 Hz for chemical shifts and 0 to
20 Hz for coupling constants. The fit was exact in about one half of the cases studied.
All the remaining cases were characterized by at least one very strong coupling leading
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to a kind of deceptive simplicity where the solution is not unique. The average number
of forward runs needed to find a solution was about 195.

Next we used an experimental proton spectrum of 2-benzoylpyridine (7) and tried to
fit it, starting with parameters which were progressively more and more removed from
the true values (both positive and negative excursions were adopted at random). A
solution was always found even if the starting parameters were wrong by as much as
+100 Hz for the chemical shifts and +10 Hz for the coupling constants. In about two
thirds of the cases with very wrong starting parameters, however, the program ended
with inverted signs of some of the coupling constants so that the fit was only approximate.

(iv) The Influence of Experimental Noise

As most of our test cases were based on simulated (and therefore noiseless) spectra, we
wanted to investigate also the influence of noise on the final fit. From the experimental
point of view, the errors in line intensities exceed considerably the errors in line positions.
Since our method does take intensities into account, we were somewhat worried that
these errors might be reflected in the final parameters.

In order to check this point, we simulated noisy experimental spectra by adding to the
intensity of each transition a number produced by a random number generator with a
Gaussian distribution characterized by a standard deviation proportional to the
intensity of the transition in question. The ratio p between the standard deviation and the
line intensity (i.e., the relative error) was kept constant for all lines within a spectrum.
The resulting set of lines was then fitted exactly as in the noiseless cases.

For the AB-spectra, p was increased progressively from 0.05 up to 1.0. Surprisingly,
this had little effect on the final parameters. Even an exceedingly large noise (p = 1.0)
led to an error of only about 0.05 Hz (out of 30 Hz) for the chemical shifts and about
0.4 Hz (out of 15 Hz) for the coupling constant.

For the ABC-spectra, the level of the artificial noise was held constant, either at
p =0.01 or0.1. In all the cases studied, a solution was still found and the effect of the
noise on the final parameters was very small. For some reason, however, the proportion
of solutions with inverted signs of coupling constants was substantially higher than
in the noiseless cases.

Finally, as a very extreme case, we tried to fit the same ABC spectra with all transition
intensities smaller than 0.2 put equal to zero and all intensities bigger than 0.2 put
equal to 1. Even these truncated spectra were still fitted with the final chemical shifts
within 4 Hz, and the coupling constants within 2 Hz, of the original values.

We also expanded our tests to the noisy experimental spectrum of the ABC system
acrylonitrile, using line positions and intensities as given in the literature by Castellano
and Waugh (2).

The parameters which we obtained from a conventional fit with line assignment based
on preknowledge of parameters are as follows:

®; =14.35 + 0.04 Hz, w, = 19.25 + 0.03 Hz, w, = 33.60 + 0.04 Hz
Ji»=1.26 +0.04 Hz, J;5 = 18.07 + 0.04 Hz, J,, = 11.22 + 0.07 Hz.

In our approach we first assumed that the chemical shifts are approximately known
but not the couplings:

w; =10.0 Hz, w, =20.0 Hz, w; = 30.0 Hz; J,, =J,5 =J,; =0 Hz.
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In a second trial we chose more extreme starting values for the chemical shifts but
reasonable couplings:

o, = 5.0 Hz, ®, = 15.0 Hz, ; =40.0 Hz, J;, = 0.0 Hz, J;3 = J,; = 10.0 Hz.

In both cases line assignment for the conventional methods of analysis was im-
possible. Our program, however, found the correct solution in the first runs within the
errors of the above cited analysis.

V. VARIOUS PROBLEMS ENCOUNTERED

Most of the problems encountered in the iterative fit of an experimental spectrum
are usually related to the question whether there exists a one-to-one relation between
the parameters of the Hamiltonian and the spectrum or whether the iterative process
may lead to a series of equivalent or nearly equivalent solutions. For an iterative fit,
it must be kept in mind that not only the exact equivalence but also a simple similarity
of spectra may lead to local minima, and consequently, to multiple solutions. The
uniqueness problem has several aspects and consequently it has been discussed under
many different headings such as permutation of nuclei, inversion of coupling constants,
weak coupling, very strong coupling with degeneracy, and deceptive simplicity.

(i) Nuclear Permutation

In systems like ABC, ABCD, etc., the labeling of nuclei is arbitrary (this is not so in
systems like AB, or AB,C;). Consequently, any permutation of the labels does not
affect the spectrum (3). The general system composed of » distinct nuclei leads to n!
such permutations. In other words, 4% as a function of parameters has at least n!
minima which are all equivalent to the exact solution.

(ii) Inversion of the Signs of Coupling Constants

Changing simultaneously the signs of all the internuclear couplings leaves an NMR
spectrum intact (3). This doubles the number of physically equivalent solutions.

(iii) Weak Coupling

In weakly coupled systems not ony a simultaneous change of all the signs of coupling
constants but also the change of any individual sign leaves the spectrum unaltered.
Consider the 3 spin system for which there are 8 possible combinations of abolute signs
of indirect couplings. As pointed out above, 4 of these are distinguishable for strong
coupling. For ABX systems, that is systems with two weak couplings, the relative sign
of J g is lost, so that only 2 combinations of signs remain distinct. Finally in the AMX
cases none of the 8 sign combinations is distinct from the others and the computer may
find 48 equivalent solutions by inverting the signs of J’s and/or permuting the nuclei.
In the intermediate couplings range there must be a continuous transition from 48
(AMX) to 24 (ABX) to 12 (ABC) equivalent solutions. In the latter two regions a
switched sign gives only an approximate fit of the spectrum. However, if the fitting
program has arrived at such a “‘wrong” coupling it will probably remain trapped there.
To arrive at the correct sign the program would have to proceed through J = 0. This
step would be unsatisfactory since a larger error will generally be encountered contrary
to a least-squares fitting procedure. Consequently, in spectra with any number of weak
or moderately weak coupling constants the program may often get trapped in local
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minima with switched signs of the coupling constants and slightly altered absolute
values of the parameters.

(iv) Very Strong Coupling, Degeneracy

Whereas in the weak coupling case some information about relative signs is lost,
very strong coupling leads to a more dramatic loss of information. As an example, we
may cite the AB spectrum, the outer lines of which, for strong coupling, disappear with
d%/2J%, the separation of the inner transitions being §%/2J. Obviously, for sufficiently
small 6%/2J, neither J nor J can be determined from the experimental spectra.

According to second-order perturbation theory, the line positions in ABC systems
which approach the AA’A" limit depend only on 4 quantities, whereas there are 5
parameters to be determined (5). For such systems, we must therefore expect a one-
dimensional array of equivalent solutions.

(v) Deceptive Simplicity

Deceptive simplicity may be defined as the degeneracy of one or several subspectra
into single transitions (6). Since subspectra usually arise from weak coupling, the
phenomenon of deceptive simplicity may be explained as due to the presence of a weak
coupling as well as a very strong effective coupling in the same spin system. More exactly,
if one internuclear coupling is much stronger than the corresponding chemical shift
and the coupling constants between the two nuclei in question and any other nucleus
differ less than the strong coupling constant, the sign of the strong coupling may be lost
and only absolute values of the sums of some of the other couplings can be determined.

(vi) Special Types of Nonunique Solutions

In cases which do not fall into any of the categories (iii) to (v), the solution should be
unique according to the Kummer’s theorem (3). It turns out, however, that when
allowance for even very small discrepancies is made, the theorem is no longer applicable
In many strongly coupled systems, two (and maybe more) widely different sets of
parameters can be found which both reproduce a given spectrum very well. We have
actually encountered two kinds of genuine approximate multiplicity. First, (see Fig.
2(a)), there may exist a one-to-one correspondence between transitions, the whole
difference between the two spectra being hidden in very small differences in relative
intensities of the lines and in the positions of lines with negligible intensities. Second
(Fig. 2(b)), one or more single lines of one spectrum may correspond to a multiplet
(usually doublet) with very fine splittings in the other spectrum.

The two examples shown in Fig. 2 are much more dramatic than those published
earlier (7); nevertheless, we have found a number of such cases and we feel that they
are more common than previously thought.

(vii) The Convergence Rate

We have been somewhat disappointed by the slow convergence rate of the proposed
algorithm. This has to be attributed to the pronounced nonlinearity of the transforms
as functions of the spectral parameters. The nonlinearity might in principle arise either
from the nonlinearity of the basis, or it could be directly related to the nonlinear behavior
of the transition frequencies and intensities. To find out whether the former effect was
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5Hz

Fi6. 2. The two types of multiplicity encountered in ABC systems. (A) One-to-one correspondence
between lines, the difference between the two spectra being hidden in very weak outside lines. Upper
spectrum: @, = 8.26, wp=6.13, e = 1.00, Jyp = 14.23, Jyec=-9.69, Jyc = 12.14 Hz. Lower spec-
trum: @, = 9.04, o = 4.89, wc = 1.53, Jun = 19.15, Joc = —3.45, Jyc = 11.33 Hz. (B) Singlets corres-
ponding to finely split multiplets of the same total intensity. Upper spectrum: w, = 1.62, wg = 1.68,
we=—9.72, Jap=0.49, Jpc=8.16, Juc =—5.16 Hz. Lower spectrum: w, = 2.91, 0 =047, wc=
—9.78, Jap = 6.55, Joc = 7.42, Juc = 6.70 Hz,

not dominant, we have devised a basis composed of broken linear functions (Fig. 1(e))
and checked its efficiency for the rough preadjustment of the parameters. The result
was negative—the convergence rate did not improve and the basis was not as successful
as the combination of moments with weighted Gaussian functions we described before.
Consequently, we believe that the slow convergence rate can be traced directly to the
transition frequencies and intensities themselves and that any improvement is possible
only by means of some kind of nonlinear transformation of the set of parameters to be
adjusted.

CONCLUSIONS AND PERSPECTIVES

Since this report has a preliminary character and further progress is being made
continuously, it is perhaps a little bit too early to make any very strict conclusions.
What our work does demonstrate quite clearly is the existence of a broad class of algor-
ithms suitable for the analysis of the spectra of coupled nuclear systems. It may not be
easy to select the algorithm which is best suited for the particular problem. At the
time this paper was being written, we had already realized that our first choices were
probably far from optimal since we had put too much emphasis on the mathematical
elegance of the adopted basis rather than on its practical efficiency. Even so, however,
the method proved to be superior to, and much less tedious than, the conventional
approach. We are therefore quite optimistic that a fully automatic and reliable algorithm
can be developed.
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At present the development concentrates on the delocalized bases and on improving
the convergence rate. Attempts are also being made to put the choice of the basis on a
more solid theoretical ground, although no success in this direction can be guaranteed.
Our most immediate goal is to improve the performance of the method for strongly
coupled systemsand for oriented molecules. The practical experiences with such systems
should, in our opinion, make it possible to find empirically an algorithm which would
be sufficiently universal and foolproof.

So far we have concentrated on linear functionals in general and linear integral
transforms in particular. The possibility of using nonlinear functionals has been dis-
carded mainly because the freedom of choice of the functionals would then exceed
imagination. It is possible to show that any linear functional can be written as an integral
transform and thus is defined by a single weight function; this is by no means true for
nonlinear functionals. To step into this field without theoretical reasons for doing so,
might prove too risky (though this statement is not intended to limit initiative). Careful
generalizations of the integral transform method might nevertheless be useful. Suppose,
for example, that the functionals are defined by the formula

4+
Fll@}= [ we)f (@) do. [13]
For f(x) = x we have our original Eq. [5]. By putting f(x) = x* we may either decrease
(z < 1) or increase (& > 1) the sensitivity of the transforms to the transition intensities.
Similarly a proper choice of f(x) may result in cutting off those parts of the spectrum
which are nearly lost in the noise, having only the prominent features.

We want finally to point out that the methods proposed in this paper are especially
well suited for the modern NMR spectrometer—computer systems in which the spectra
are already stored in a digitized form and the integral transforms can be evaluated
straightforwardly without even having seen the spectrum.

APPENDIX A
Error Propagation in the Integral-Transform Method

An experimental spectrum 7 (w) can always be described as a sum of two contribu-
tions.
I (@) = Ii(w) + r(w), [AT]

where I (w) = {I(w)> is the ensemble average over an infinite sample of such spectra
and r(w) is the random noise contribution such that {r(w)y = 0. Only the function
I(w) is supposed to be reproducible by theoretical means (in practice, however, such
effects as saturation, nonlinearity of the detecting system, form of the magnetic field
inhomogeneity within the sample, etc., may affect the form of 7 (w)). The noise can be
characterized by its correlation function

C(7) = {r(w) r(w + 1)) [A2]

For simplicity, we will assume that C(t) = p* d(t) where p is the rms of the noise and
d(t) is the d-function (this is the so-called white noise). The integral transform &,
{I(w)} defined by Eq. [5] can be rewritten

F (o)} =F, + Pu, [A3]
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where 7!, =% {[(w)} and ¢, = F {r(w)}. By virtue of the linearity of #,, (¢,
=F {{r(w)>} = 0 it is therefore evident that

(i) the experimental noise does not lead to any systematic errors in the integral
transforms and
(ii) the random error due to the experimental noise is given by ¢(w).

We can now determine the covariance matrix for the random parts of any set of
integral transforms. Let C;; = {¢; ¢,>, where the indices i and j refer to the basis
functions w; and w;, respectively. Then

Ciy =< [ i@ r@)do [ wi@)r@) dw’>

-— -0

= l f wi(w)w () r(w) r(e’) do dm’>

00 400

= J- f wi(@) wi(@’) {r(w) r(w’)) do do’

+00 400
- j f wi(@) w (@) C(o’ — o) dodo’. [A4]
=00 —ab
In particular, for white noise,

@

Cuy=p* [ wi@)w,@)do, [AS]

-0

so that the covariance terms (i =j) vanish whenever the basis is orthogonal. The
variances V; of the transforms are of course given by the diagonal terms of the co-
variance matrix, V;= C;;. Once the covariance matrix for the transforms (i.e., the
quantities to be fitted) has been determined, the covariance matrix for the spectral
parameters (i.e., the quantities to be adjusted) can be obtained by methods described
elsewhere (1).

APPENDIX B

Numerical Problems Connected With the Choice of Bases

For any basis {wy(w), k =1, 2, . . ., =}, it is always necessary to find a fast numerical
algorithm for evaluating the following mathematical quantities:

(i) By(a,b)= j wi(w) do>

(i) Cya,b) = f @ wy(®) dw

+0

(iii) Dy(o, Ov) = _|' W(@) L(0 — 0, Ov) do>,

+w
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27-1
P(w,ov)= ;ﬁ_\s [1 + (i_c:) ]

is the normalized Lorentzian line. The first two are required for a numerical evaluation
of the integral transform # ,{I (@)}, where /., (@) is the digitized experimental spectrum ;
for each interval between two adjacent data points, /() is approximated by a linear
function (ae + f) so that the contribution of this interval to the transform reduces to the
evaluation of the two integrals of the type (i) and (ii). The third integral expresses the
contribution of a Lorentzian line of linewidth dv to the transform; it appears in evalua-
tion of the transforms of the theoretical spectra. For the stick spectra, however, the
third integral reduces to A,(w,) = wi(wy,).

For the Fourier basis defined by Eq. [8], none of the above quantities presents any
numerical problems. They can all be calculated either explicitly or, much more effi-
ciently, through simple recurrence formulas. The recurrence process is stable and can
be easily started at whatever value of the index k.

The Hermitian basis Eq. [9], is also quite satisfactory as far as quantities A,, By, and
C, are considered. The only disadvantage here is that the recurrence formulas have to
be started at k = 0 even if the low terms are not required. Otherwise, the recurrence pro-
cess is also stable. Real problems arise in connection with the quantity D,. A recurrence
formula can be easily found but it does not appear to be stable with respect to the
propagation of roundoff errors. Moreover, to start the recurrence, the value of the error
function of a complex argument has to be evaluated. For narrow lines, the argument
lies in the vicinity of the imaginary axis and it seems that there does not exist any satis-
factory numerical approximation in this region.

The Gaussian basis, Eq. [10], is similar to the Hermitian basis in all respects. In both
cases, the problems with the quantity D, would disappear, however, if the lines were
assumed Gaussian rather than Lorentzian. It is the mixing of the two types that gives
rise to the numerical difficulties. In the case of moments, Eq. [11] presents no problems
at all, and the same goes also for the delocalized Lorentzian basis, Eq. [12]. In the latter
case, it would not be advisable to assume Gaussian lines; there would of course be no
problems with Gaussian lines in connection with a delocalized Gaussian basis.

where
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