Pulsed 1H NMR Relaxation in Crystalline Syndiotactic Polystyrene

Capitani D., Segre A.L., Grassi A., Sykora S.

Macromolecules 24, 623-624 (1991)

This copy, scanned from an Author's reprint, is intended for personal perusal only. Other uses require permission of the *American Chemical Society*.

Other works by Stan Sykora can be found at www.ebyte.it

This is a brief Note with no Abstract. Its main conclusions are:

(i) The pulse ¹H NMR technique is capable of discriminating between polymorphous polystyrenes.

(ii) T_1 relaxation gives a clear warning on the intensities used in CP-MAS techniques, regardless of contact times. Spectral intensity differences might be due to difference in proton relaxation times.

(iii) An optimal temperature can be found, where the difference between T_1 relaxations is the highest; at this temperature 13C CP-MAS might be carried out to give the best results.

(iv) The value of the maxima defines a scale $T_{1\delta} < T_{1\gamma} < T_{1\sigma} < T_1\beta$. The order of this scale matches the solubility scale and solvent permeability of the four mesomorphous forms. Since O_2 adsorption shortens T_1 relaxation, it seems possible to correlate these values to the amount of sorbed O_2 .

Keywords: NMR, LR NMR, Polymer, Polystyrene, Dissolved oxygen, T1, Relaxation time, CP-MAS

Pulsed ¹H NMR Relaxation in Crystalline Syndiotactic Polystyrene

Syndiotactic polystyrene can crystallize in four major crystalline modifications.¹ This complex polymorphism arises for two different reasons. The first derives from the conformation of the single macromolecule. In the α and β forms² of syndiotactic polystyrene, the TT chain gives rise to macromolecules in a planar zigzag conformation, with a 5.1-Å identity period,¹ while, in the γ and δ forms, a TTGG conformation was proposed on the basis of energy calculations.³ These last two forms^{3,4} have $s(2/1)^2$ symmetry and an identity period close to 7.7 Å.

The second cause of polymorphism is molecular packing; this is the origin of the structural difference between the α and β forms.⁵⁻⁷

Due to varying γ -gauche contributions,⁸ ¹³C CP-MAS NMR distinguishes clearly between polymers differing in the backbone conformation, but distinguishing polymorphs that have their origin only in molecular packing is rather ambiguous⁹ and sometimes unsuccessful.¹⁰

Here we report a study of the four crystalline modifications of syndiotactic polystyrene by pulsed ¹H NMR, the measured parameters being the spin-lattice relaxation times, T_1 and $T_{1\rho}$, vs the temperature. The dependence of the spin-lattice relaxation time T_1 on temperature for two polystyrene samples, one highly isotactic and the other highly syndiotactic (γ -form), is reported in Figure 1. Both samples were carefully degassed.

The usual progressive decay of T_1 vs temperature can be seen; note that, on this basis, a distinction between the two polymers is not clear. In the temperature range 240– 480 K the FID shows only one component, either lorentzian or gaussian or any combination of the two, depending on the temperature.^{11,12} In the same range of temperature, the spin response to an inversion-recovery pulse sequence is a single exponential. Experiments at lower temperature are in progress. The dependence of T_1 on temperature for the four polymorphous modifications of syndiotactic polystyrene is reported in Figure 2. All samples were undegassed. Since the four curves are well separated, a clear distinction between all four polymorphous forms can be observed. Note that the same measurements in well-degassed samples do not show any appreciable difference.

A large variation between degassed and undegassed aromatic polymers was previously observed by Froix et al.¹³⁻¹⁵ This effect was attributed to the presence of O_2 molecules adsorbed on the aromatic rings. In the case of syndiotactic polystyrenes, the O_2 molecules act as a relaxation reagent that greatly affects the T_1 relaxation values, while the absorption of O_2 is modulated by the molecular packing. Thus, sorbed O_2 allows NMR relaxation to distinguish between syndiotactic polystyrenes having polymorphism as a unique difference.

The behavior of $T_{1\rho}$, the relaxation in the rotating frame, vs the temperature is reported in Figure 3. The strong difference observed in the T_1 plots is lacking, owing to the fact that $T_{1\rho}$ is mostly sensitive to low-frequency motions. However, the α form seems to relax faster than the other forms, probably because of some cooperative motion. All plots, in T_1 and $T_{1\rho}$, collapse into a single plot at temperatures higher than the T_g ($T_g \sim 90$ °C).¹⁶ Their scattering can be regarded as a measure of the experimental error.

From all these data taken together, several conclusions may be drawn:

(i) The pulsed ¹H NMR technique is capable of discriminating between polymorphous polystyrenes.

Figure 1. T_1 as a function of the temperature for syndiotactic and isotactic polystyrene.

Figure 2. T_1 as a function of the temperature for four crystalline modifications of syndiotactic polystyrene.

(ii) T_1 relaxations give a clear warning on the intensities used in CP-MAS techniques regardless of contact times. Spectral intensity differences might be due to differences in proton relaxation times.

(iii) An optimal temperature can be found, where the difference between T_1 relaxations is the highest; at this temperature (by means of properly tailored 2D experiments) ¹³C CP-MAS might be carried out to give the best results.

(iv) The value of the maxima (see Figure 2) defines a scale

$$T_{1\delta} < T_{1\gamma} < T_{1\alpha} < T_{1\beta}$$

The order of this scale strictly matches the solubility scale and solvent permeability of the four mesomorphous forms.¹⁷ Since O_2 adsorption shortens T_1 relaxations, it seems possible to correlate these values to the amount of sorbed O_2 .

Work is in progress to extend this study to the lowtemperature range and to partially deuteriated polymers.

Experimental Section. Syndiotactic polystyrene was prepared according to the literature;¹⁸ α , β , γ , and δ polymorphs were crystallized and characterized by X-ray by Guerra and Corradini.²

0024-9297/91/2224-0623\$02.50/0 © 1991 American Chemical Society

Figure 3. $T_{1\rho}$ as a function of the temperature for four crystalline modifications of syndiotactic polystyrene.

Since the δ form converts into other polymorphs,² NMR measures were carried out only at increasing temperatures.

Spin-lattice relaxation times, T_1 , were measured at 30 MHz by a conventional inversion-recovery sequence with relaxation delays larger than 5 T_1 . Spin-lattice relaxation times in the rotating frame, $T_{1\rho}$, were measured at 40 kHz by a standard spin-locking sequence. The signal to noise ratio was improved by multiple scans (at least 32). The reported T_1 values are the result of a three-parameter best fit procedure over at least 64 experimental points. In all measurements, experimental error is well within 10% of the reported value.

All low-resolution ¹H NMR spectra were taken on a commercial spectrometer (Spinmaster, 4, 7- μ s 90° pulse, 7- μ s dead time), equipped with a variable-temperature unit controller, from Stelar, Mede (PV), Italy.

Acknowledgment. Thanks are due to Prof. G. Guerra and Prof. P. Corradini for the X-ray powder spectra characterization and for useful discussions. The technical assistance of Miss P. Cafarelli is acknowledged. This work was supported by Progetto Chimica Fine II "Materiali Polimerici".

References and Notes

- Chatani, Y.; Fujii, Y.; Ijitsu, T. Polym. Prepr. Jpn. (Engl. Ed.) 1988, 37, E428.
- (2) Guerra, G.; Vitagliano, V. M.; De Rosa, C.; Petraccone, V.; Corradini, P. Macromolecules 1990, 23, 1539.
- (3) Corradini, P.; Napolitano, R.; Pirozzi, B. Eur. Polym. J. 1990, 26, 157.
- (4) Immirzi, A.; De Candia, F.; Iannelli, P.; Vittoria, V.; Zambelli, A. Makromol. Chem., Rapid Commun. 1988, 9, 761.
- (5) Corradini, P.; Guerra, G.; Pirozzi, B., to be submitted for publication.
 (6) Corradini, P. Structural Order in Polymers: Pergamon Press.
- (6) Corradini, P. Structural Order in Polymers; Pergamon Press:
 Oxford, 1981; p 25.
- (7) Lovinger, A. J. Developments in Crystalline Polymers; Pergamon Press: Oxford, 1981; p 195.
- (8) Tonelli, A. E. Macromolecules 1983, 16, 604.
- (9) Brückner, S.; Meille, S. V.; Sozzani, P. IX Convegno Italiano di Scienza delle Macromolecole; Atti del Convegno, 1989, p 493.
- (10) Grassi, A.; Longo, P.; Guerra, G. Makromol. Chem., Rapid Commun. 1989, 10, 687.
- (11) Axelson, D. E.; Mandelkern, L.; Popli, R.; Mathieu, P. J. Polym. Sci., Polym. Phys. Ed. 1983, 21, 2318.
- (12) Axelson, D. E.; Mandelkern, L. J. Polym. Sci., Polym. Phys. Ed. 1983, 21, 29.
- (13) Froix, M. F.; Williams, D. J.; Goedde, A. O. J. Appl. Phys. 1975, 46, 4166.
- (14) Froix, M. F.; Williams, D. J.; Goedde, A. O. Macromolecules 1976, 9, 354.
- (15) Froix, M. F.; Williams, D. J.; Goedde, A. O. Macromolecules 1976, 9, 81.
- (16) De Candia, F.; Russo, R.; Vittoria, V. J. Polym. Sci., Part C: Polym. Lett. 1990, 28, 47.
- (17) Vittoria, V.; De Candia, F.; Iannelli, P.; Immirzi, A. Makromol. Chem., Rapid Commun. 1988, 9, 765.
- (18) Pellacchia, C.; Longo, P.; Grassi, A.; Ammendola, P.; Zambelli, A. Makromol. Chem., Rapid. Commun. 1987, 8, 277.
- (19) CNR.
- (20) Università di Salerno.
- (21) Stelar s.n.c.

D. Capitani,^{*,19} A. L. Segre,¹⁹ A. Grassi,²⁰ and S. Sykora²¹

Istituto Strutturistica Chimica, CNR M.B. 10, Monterotondo Staz., 00016 Roma, Italy Dipartimento di Fisica, Università di Salerno 84100 Salerno, Italy Stelar s.n.c., via E. Fermi 4 27035 Mede (PV), Italy

Received June 5, 1990

Revised Manuscript Received November 6, 1990