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Abstract

We present a novel approach to the nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) analysis of complex

samples with a non-trivial distribution of longitudinal relaxation rates R1. The method, denominated PERFIDI, aims at separating signals

arising from components with different R1's prior to actual data acquisition. Given any standard NMR / MRI pulse sequence, by itself

insensitive to differences in R1's, it can be combined with a PERFIDI preamble which functions as a preliminary R1 filter and confers the

original technique sensitivity to the R1 dimension. The article states the principles of the approach, including the way of accounting for

instrumental imperfections, and shows how to build PERFIDI filters with specific filter profile functions. Using terms borrowed from

electronics, these are classified as low-pass, high-pass and band-pass types. Also included are an experimental verification example and a

discussion of potential applications of PERFIDI in various NMR areas.
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1. Introduction

   The concept of PERFIDI [1] is illustrated in Figure 1.

Given any 'standard' pulse sequence X, one combines it with

a preamble of inversion pulses. The timing of the preamble

is varied, using two or more settings, and the acquired data

are linearly combined so as to enhance the effect of the

preamble-timing differences. In a complex sample exhibiting

different longitudinal relaxation rates R1 (inverse of T1), the

result is a pre-selection of components according their R1

values.

Fig.1. The concept of PERFIDI

   It will be shown that PERFIDI introduce the possibility of

avoiding some of the mathematical problems connected with

Laplace transform inversion.

   In general, the category of inversion problems we deal

with most often is structured as follows: Let p be a material

property and s(p,t) an elementary transient signal from a

homogeneous sample corresponding to the particular value

of p. In a heterogeneous sample one expects a statistical

distribution of the p-values according to a distribution

density function w(p). The experimental signal from such a

sample is then given by the integral transform

   ∫= dp)t,p(s)p(w)t(S . (1)

   In practice, we assume s(p,t), measure S(t), and wish to

invert Eq.(1) to recover w(p). A simple minded solution of

such inversion problems [2,3] involves the following steps:

- p and t are digitized following a digitization strategy (lin or

log), so that p∈{pi, i = 1,2,...,M} and t∈{tj, j = 1,2,...,N}.

- The integral transform (1) then becomes a matrix equation

   wK = S, where (2)

w ≡{wi = w(pi)} and S ≡{Sj = S(tj)} and K ≡{Ki,j = s(pi,tj)}.

- The formal solution of Eq.(2) is

   w = SK
-1

. (3)

   Whether the simple approach can work depends upon the

condition number [4] Cn(K) of the kernel matrix K defined

as the ratio between the largest (in absolute value) and the

smallest singular values of K (singular values of a matrix are

its diagonal elements after singular value decomposition). In

a sense, Cn(K) defines the noise amplification factor implicit

in Eq.(3).

   In practice, all kinds of situations arise. Thus in NMR

spectroscopy p is the Larmor offset Ω, t is the FID sampling

time and s(p,t) = exp(iΩt). This leads to an ortho-normal,



Fourier kernel K whose condition number is 1, indicating an

extremely stable inversion.

   In NMR relaxometry, p is identified with a relaxation rate

R, t with a pulse-sequence delay τ and s(p,t) = exp(-Rτ). It
turns out that the condition numbers of the resulting Laplace

kernels K are extremely large (e.g., using a log distribution

with 64 points spread over 4 orders of magnitudes, a simple

Matlab program gives Cn of the order of 10
20 

).

   In order to obtain meaningful results, such ill-condition

cases [5] must be re-conditioned which, in general, involves

a drastic reduction of admissible solutions. The most often

used methods are:

- Decrease of the digitization resolution,

- Introduction of suitable a-priori knowledge, and

- Penalties on undesired features of w(p).

   The Laplace transform inversion is generally carried out

by means of damped singular value decomposition [3,6,7] or

by iterative fitting combined with various penalties. Hence a

range of methods [8-10], of which the most reliable one

appears to be UPEN [10].

   The driving idea behind PERFIDI is the desire to separate

the sample components according to their longitudinal

relaxation rate R1 prior to data acquisition rather than doing

it mathematically a-posteriori.

   Conceptually, there is nothing new in this. Virtually all

NMR spectroscopy sequences can be in fact intended as a

kind of filters on spin-system components possessing a

desired characteristic such as a particular coupling pattern.

   There are two types of precursors of this approach. In MRI
one often uses particular acquisition parameter settings to obtain

T1-weighed images. This is useful but it is difficult to make it

rigorous in a quantitative way, due mostly to B1

inhomogeneity which causes the efficiency of inversion

pulses to vary across the sample. Another precursor consists

in zeroing the magnetization of sample components with one

or more particular values of T1, using one or more inversion

pulses and suitable delays. This has two drawbacks: (i)

again, it is difficult to achieve zero magnetization across the

whole sample due to B1 inhomogeneity and (ii) forcing the

magnetization to be exactly null for selected values of T1

dramatically decreases the signal magnitude for broad T1

ranges and thus destroys the S/N ratio.

   We present a category of R1 filters based on a different

line of reasoning. Rather than trying to zero the

magnetization for some values of R1, we follow the analogy

of electronic band-pass filters, concentrating primarily on

the components which 'pass though' rather than those which

are 'blocked'.

2. Construction of T1 filters

   To construct the R1 filter sequences, we intentionally use

only inversion RF pulses. This bias is motivated by the fact

that inversion pulses

- have the largest effect on longitudinal magnetization,

- have a high tolerance to instrumental imperfections,

- produce the smallest amount of offset-related artifacts due

to transverse magnetization components,

- can be made more precise by using composite pulses, and

- are compatible with optional, trailing gradient pulses for a

more perfect suppression of transverse components.

   In order to obtain reliable results we must also take into

account the fact that, in practice, an inversion pulse always

has a limited efficiency which varies across the sample

volume due to B1 inhomogeneity and other effects. Only

taking the inversion pulse efficiency into account can one

hope to obtain a method which works reliably under real

conditions and on real, often imperfect, instruments.

   An elementary inversion-sequence slice with an imperfect

inversion is shown in Figure 2.

Fig.2. Elementary inversion-sequence slice.

   The effect of such a slice on a sample component with

relaxation rate r can be viewed as an operator Qη(d,r) which
converts an initial longitudinal magnetization mi into a final

longitudinal magnetization mf by applying an inversion

pulse (π) with inversion efficiency η, followed by a delay d.

Explicitly, assuming a unit equilibrium magnetization m0 =1,

the effect of Qη(d,r) on mi is

rd
if e)m1(1m −η+−= (4)

   The inversion-efficiency factors η can assume values

ranging from 1 (perfect inversion) to -1 (no effect). In

practice one encounters values lying anywhere between 0

and 0.9.

   A PERFIDI preamble is a sequence composed of n

consecutive elementary slices. Its effect on an initial sample

magnetization mi can be written symbolically as



    F(r;d1,d2,...,dn){mi} ≡  mf

     = Qη(dn,r){... {Qη(d2,r){Qη(d1,r){mi}}}}. (5)

   This leads to a recurrence relation with respect to n which

admits an explicit solution. Putting mi =1 (i.e., starting with

a relaxed sample), the solution can be written as:

   
∑ ∑
−

= −=
−η−η+−=

1n

0k

n
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j

k

n21

)drexp()()1(1   

)d,...,d,d;r(F

. (6)

   Notice that F(r;d1,d2,...,dn) is a polynomial with respect to

the efficiency factor η.

   To make the filter effect on components with the same

value of r the same in every part of the sample, we should

try to separate the effects of η from those of r. In other

words, we need to achieve a factorization of the type

   F(r;d1,d2,...,dn) ≡ F(r,{dk})= E(η) f(r,{dk}), (7)

where E(η) is a global efficiency factor independent of r and

f(r,{dk}) is an η-independent filter profile.

   In general, the factorization is done by means of linear

combinations (typically just sums and differences) of data

acquired in separate scans in which the PERFIDI sequences

assume different values for some intervals. The desired

effect is the elimination of all the terms but one in the η-

polynomial of Eq.(6).

3. A two-pulse PERFIDI filter

   To see how this can be achieved, consider the simplest

PERFIDI preamble composed of just two elementary slices

(Figure 3).

Fig.3. Two-pulse PERFIDI sequence.

The first delay alternates between two different values upon alternate scans.

   If one acquires two scans using the same delay d2 in the

second slice but different delays d1 and D1 in the first slice

and subtracts the two data sets, the effect on a sample

component with relaxation rate r is

   F(r;d1,d2) - F(r;D1,d2) = η(1+η) f2(r;D1,d1,d2), (8)

Where

   ( ) 211 rdrDrd
2112 eee)d,d,D;r(f −−− −= . (9)

   Selecting different values of the delays D1,d1 and d2 one

can modify the filter profile in various ways. Figure 4 shows

two sub-families of such filters. Each profile curve refers to

a particular value of a single parameter ∆ to which the delays

d1 and D1 are proportional (d2 is kept equal to zero).

Fig.4. Some two-pulse PERFIDI filter profiles

Horizontal axis: r. Vertical axis: f2(r,D1,d1,d2) with d2 = 0. Left graph: d1=0,

D1=∆. Right graph: d1=0.15∆, D1=0.85∆. ∆ is 1 second for the leftmost

curve and decreases by 10 from left to right.

4. Experimental verification

   Figure 5 shows the results of a verification of the effects of

a two-pulse PERFIDI filter on a mono-exponential test

sample. The high degree of agreement (~1%) would be

impossible to achieve had we not taken into account the

limited inversion efficiency (η was in this case about 0.85).

Fig.5. Experimental verification of two-pulse PERFIDI filter.

Sample: H2O doped with Cu-EDTA; mono-exponential. Vertical axis:

signal sampled by a 90o pulse just after the PERFIDI sequence and

normalized with respect to a completely relaxed 90o pulse response.

Horizontal axis: ∆. Filter settings: d2 = 0; left graph:  d1 = 0, D1 = ∆; right

graph: d1 = 2∆/3, D1 = 4∆/3. Solid lines connect calculated (theoretical)

points, dots indicate experimental data.

   A complete verification requires an extensive study which

exceeds the scope of this presentation (in progress).

5. Principal features of PERFIDI filters

   The following features of the PERFIDI filters are evident:



- The filter profiles depend only upon exactly known delays

and not at all upon sample properties (specific values of T1),

nor upon instrumental factors (B1 inhomogeneity).

- There is a close analogy between the relaxation filters and

the frequency filters in electronics. In particular, we can

distinguish between low-pass, high-pass and band-pass filter

types.

- On a log(r) scale, simultaneous scaling (multiplication) of

all delays of a PERFIDI filter shifts the filter profile left or

right while leaving its shape intact.

- There are no zero-crossings, just attenuation's.

6. Examples of higher order filters

   Using more than two elementary inversion slices opens the

doors toward ever narrower filters with steeper slopes. When

the number of inversion pulses increases, so does the

number of possible factorization solutions.

   The simplest of these consist in applying N cascaded two-

pulse filters for a total of 2N inversion pulses. Naturally, it

then takes 2
N
 separate scans to run through all the required

delay-alternation settings but, as visible in the graphs, one

ends up with filters whose cut-off regions exhibit 10N

dB/decade slopes.

Fig.6. Examples of PERFIDI relaxation filters

obtained by cascading 1 to 5 two-pulse filters, all of the type shown in Fig.4

for ∆ = 10 ms. Notice the increasing slope of the cut-off edges, the

narrowing of the pass-through band and, in the case of band-pass filters, the

decrease of center-band sensitivity.

For lack of space, we can not discuss phase cycling and the

way it can be intertwined with delay-cycling. Likewise, we

have to postpone the discussion of the use of gradient pulses

for a better suppression of transversal components.

7. Exploitation of PERFIDI

   Due to the fact that they can be combined with almost all

established sequences, PERFIDI are bound to find useful

applications in all branches of NMR.

   Consider the simple example of PERFIDI combined with

the plain 1D spectroscopy experiment. By carrying out a

series of PERFIDI measurements with filters like those

shown in Fig.4 and varying ∆, one obtains a 2D data set in

which one axis is the usual spectral offset while the other is

essentially the relaxation rate. The result is reminiscent of

the Diffusion Ordered Spectroscopy (DOSY) sequence but

with R1 replacing the diffusion rate.

   In MRI, PERFIDI open the following possibilities:

- Pre-selection of tissues according to T1.

- Enhanced contrast in the neighborhood of a particular

value of T1 (by working on the slope of a PERFIDI filter).

- Reinforcement of the effects of contrast agents.

- Reduction of the required amounts of contrast agents.

   In NMR relaxometry, the advantages include:

- Pre-selection of a relaxation rate interval in routine essays.

- Splitting the total range of relaxation-range values into

narrower sub-intervals before analysis by means of UPEN or

similar algorithms.

   An exciting possibility is related to the fact that the

relaxation inversion kernel K
P
 for data obtained using

PERFIDI is better behaved (its condition number is orders of

magnitude smaller) than the plain Laplace inversion kernel

K
L
. It follows that PERFIDI can substantially improve the

reliability and resolution of experimentally determined

relaxation-rate distribution curves. Further verification and

exploitation of this fact is underway and will be presented

elsewhere.
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