### Molecular Spins ... a new Frontier?

#### Stanislav Sýkora

Warning: this is a presentation of a Conjecture

which contains many plausible aspects, but also some questionable ones.

An experimental verification is at present not available.

# Magnetic particles which we know reasonably well today

(meaning that we know both the spin S and the magnetic moment  $\mu$ )

| Leptons             |                 | Nucleons                                                   | Nuclides                               |
|---------------------|-----------------|------------------------------------------------------------|----------------------------------------|
| e <sub>1/2</sub>    | -28024.952      | <sup>1</sup> p <sub>½</sub> 42.57748 uud                   | $^{1}\text{H}_{\frac{1}{2}}$ 42.57748  |
| $\mu_{1\!/_{\!2}}$  | -135.539        | $^{0}$ n <sub><math>\frac{1}{2}</math></sub> -29.16469 ddu | $^{2}\text{H}_{1}$ 6.53590             |
| $\tau_{1/2}$        | too short-lived | Hyperons                                                   | $^{3}\text{H}_{\frac{1}{2}}$ 45.41367  |
| $V_{1/2}$           | haha, catch me! | $\Lambda, \Sigma, X, \Omega$ too short-lived               | $^{3}\text{He}_{\frac{1}{2}}$ 32.43410 |
|                     | Hadrons         | Photons                                                    | <sup>6</sup> Li <sub>1</sub> 6.26587   |
| $\eta_{1\!/_{\!2}}$ | too short-lived | $\phi_1$ 0.000000 (in vacuo)                               | etc. $\approx 81$ of them              |

*Notes: lower-right index is the spin S, the value is the gyromagnetic ratio*  $\gamma = \mu / hS$  *in MHz/T* 

Could we have some more ???

#### What about magnetic properties of molecules?

#### Persistent magnetic properties conferred by incorporated magnetic particles:

- \* All practical magnetic *materials* are presently based on presence of unpaired electrons
- \* Some devices are based on persistent superconducting loops (BCS electron pairs)
- \* NMR exploits nuclear magnetism (detectable also without resonance)

#### But could molecules with no magnetic particles also have magnetic moments?

| Property                                            | Particles                   | Diamagnetic molecules                                   |
|-----------------------------------------------------|-----------------------------|---------------------------------------------------------|
| Electric dipole, induced Electric dipole, permanent | Yes, tiny? tiny (CP)        | Yes (electric polarizability) Yes (symmetry permitting) |
| Magnetic dipole, induced Magnetic dipole, permanent | ? undetectable Yes (if S>0) | Yes (magnetic susceptibility) ??? What !!!              |

### ?!? Permanent magnetic moments in diamagnetic molecules ?!?

?!! Man, you must be CRAZY!!?

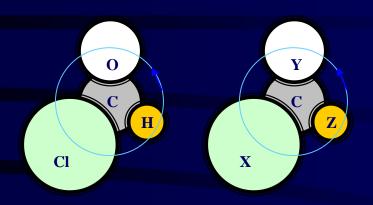
There would have to exist persistent current loops inside the electron shell!

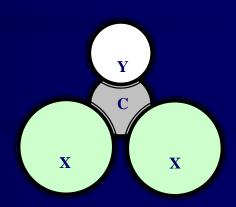
#### The Conjecture:

There may, and do, exist

persistent electron current loops
in molecular electronic shells, giving rise to

intrinsic molecular magnetism,
unrelated to any incorporated magnetic
particles, nor to any induced currents


- Question: Why should such currents exist?
- Answer: Why not? Nothing forbids them!


But let me try and tackle the query Why yes?

#### **Molecular symmetry considerations**

Circular asymmetry (axiality)

Circular symmetry (anaxiality)

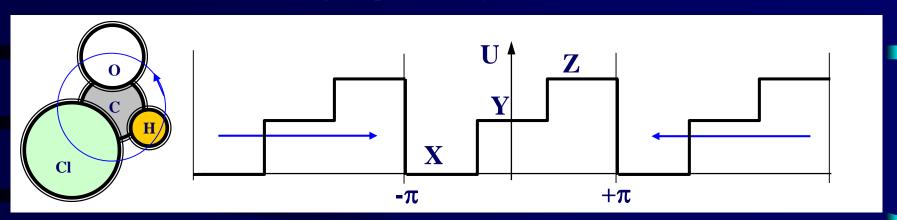






Axiality & mirror reflections

*Note:* 


axiality is **not** chirality !!!

It does not make the molecule optically active.

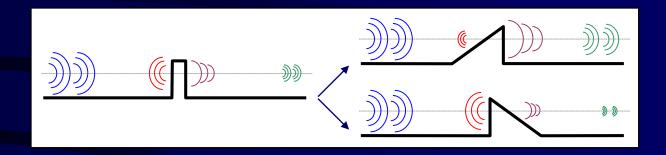

It does not lead to diastereomerism.

#### **More symmetry considerations**

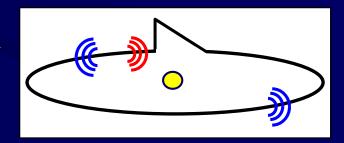
Running loops one way and the other



There are an infinity of examples of circularly polarized mechanical devices




Fans, one-way clutches in all kinds of machinery, slipper clutches in motorbikes, etc, etc.


What about quantum analogies ?!?

#### **Quantum Physics:** traversing barriers (tunnelling)

- In these cases, the barrier asymmetry <u>does</u> matter (as it should)
- Note: wavefunctions are **pre-constructed** from the incident wave, the **reflected wave**, the **transmitted wave**, and perhaps a near transient; only coefficients are adjusted to match the Schrödinger equation.



- It is easy to close the linear path into an asymmetric circular loop:
- Shouldn't the asymmetry still matter !?



#### A fallacy in the standard handling of bound states

In molecules,

standing waves are **assumed** even **before** facing the eigenvalue problem. But in such multi-body systems, this may be too restrictive!

$$ih \frac{d}{dt} \Psi(s,t) = H\Psi(s,t) \longrightarrow \Psi(s,t) = exp\left(-i\frac{E}{h}t\right)\psi(s) \Longrightarrow H\psi(s) = E\psi(s)$$

For the ultra-simplified case of electron on a loop orbital, we might get:

$$ih \frac{d}{dt} \Psi(\phi, t) = -\frac{h^2}{2G} \frac{\partial^2}{\partial \phi^2} \Psi(\phi, t) + U(\phi) \Psi(\phi, t)$$

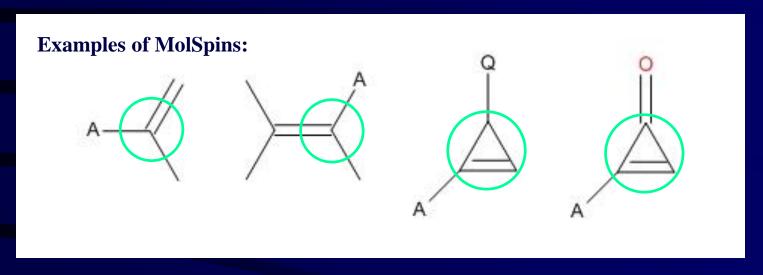
$$\Psi(\phi, t) = \exp\left(-i\frac{E}{h}t\right) \psi(\phi) \qquad \Rightarrow \qquad \frac{h^2}{2G} \frac{\partial^2 \psi(\phi)}{\partial \phi^2} + U(\phi) \psi(\phi) = E\psi(\phi)$$

$$\Psi_{\pm}(\phi, t) = \exp\left(-i\frac{E_{\pm}}{h}\left(t \pm \frac{\phi}{v}\right)\right) \psi_{\pm}(\phi) \qquad \Rightarrow \qquad H(\phi) \psi_{\pm}(\phi) = E_{\pm} \psi_{\pm}(\phi)$$

Notes: s ... all the space-like generalized coordinates, φ ... azimuth angle in a loop path

So, what if, for example,  $E_{\perp} < E_{\perp}$ ? Then  $E_{\perp}$  is the ground state, occupied by an electron pair, and the molecule hosts a persistent current. This is necessarily the case when the molecule has no circular symmetry

#### Loop orbitals and "classical" orbitals


- Classical orbitals (atomic, Slater) are legitimate solutions in simplified situations void of circularity (1 or 2 atoms)
- Loop orbitals are legitimate solutions in simplified situations with circular arrangements (this requires a minimum of three different atoms)
- It is true that the manifold generated by all functions  $\psi(s)$  is  $L_2$ -complete in the space  $\{s\}$ , but it is NOT complete in  $\{s,t\}$ . The time-dependent Schrödinger equation has a broader set of solutions!
- Since atomic orbitals are combined in many ways to form various molecular shell approximations (LCAO, SCF-LCAO, ..., DFT), these combinations should include also loop orbitals. In practice, we are the ones who builds, artfully, the molecular Hilbert space.

# Why we never saw so far such molecular magnetic moments (MMM)?

- Maybe simply because we were not looking for them
- Most of their bulk effects average out due to molecular tumbling
- They are *probably* small compared to induced effects such as the bulk magnetic susceptibility μ
- In solids, deviations of the μ tensor from its liquid-state value are likely to be ascribed to packing, small structural deviations, etc
- Last but not least: nobody used the best tool to look for persistent magnetic dipoles which, of course, is Magnetic Resonance

#### **Consequences I**

In the case of small molecules, we might have new magnetic particles (molecular spins) with which to do Molecular Magnetic Resonance (MMR)



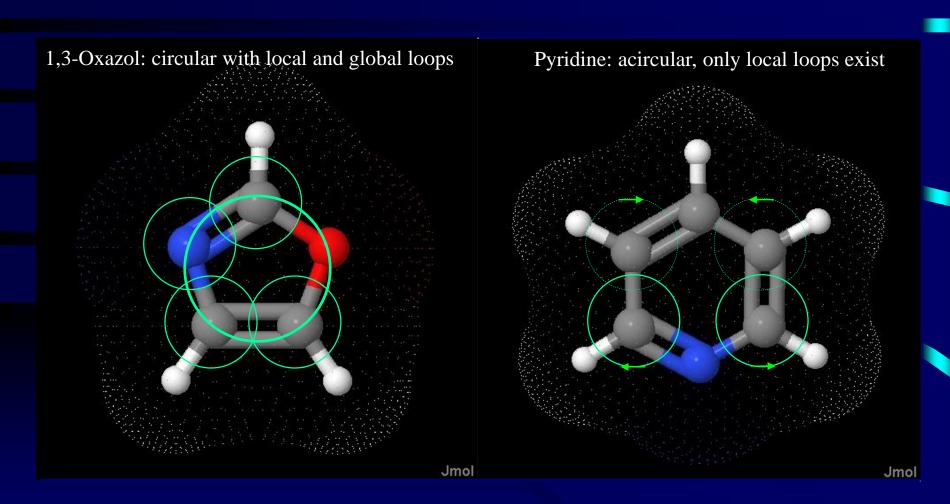
Estimates of gyromagnetic ratios: very uncertain, my early guesses indicate << 0.1 MHz/Tesla

To search for the resonances, we will probably need: highest possible fields should be used (≥ 1 GHz), in combination with extremely broad-band probes

#### Differences in the relevant Physics

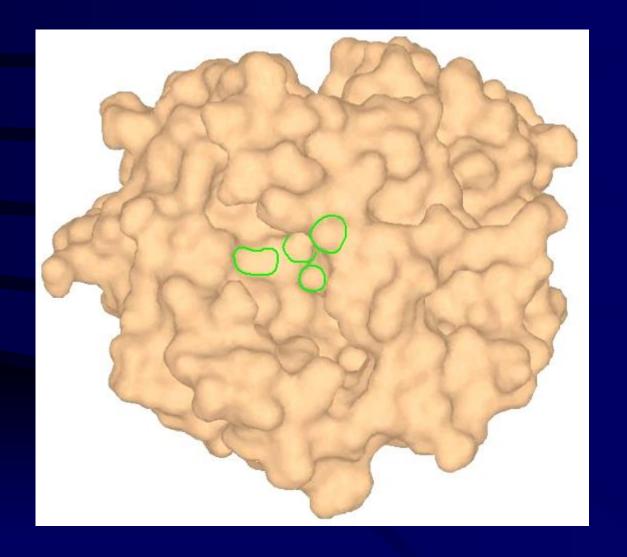
MMR physics versus that of NMR and EPR

## The differences are bound to be considerable, since some fortuitous particle properties are absent:


- \* Magnetic moment and spin do not need to be aligned (!)
- \* Magnetic moment might be spin-state dependent (!)
- \* Interaction with molecular motions is bound to be very strong
- \* Abstracted Spin Hamiltonian (Wes Anderson) is not applicable
- \* Unlike in NMR/EPR, spin is likely to be just a perturbation factor, not a dominant one, in any MMM-related phenomenon.

Consequently, any resonances are likely to be extremely broad making MMR more a playground for chemical physicists.

But: one never knows!!!


#### Global and Local circularity effects

Local current loops may exist even when, due to symmetry, the whole molecule can not have a magnetic dipole moment



#### Current loops distribution in large molecules

Only a few are drawn but they might constitute an intricate network



#### **Consequences II**

In Quantum Chemistry, loop currents might remove a roadblock:

**DFT (Density-Function Theory)** 

 $\Rightarrow$ 

**CCDFT** (Charge & Current Density-Function Theory)

... Some more potential benefits for NMR:

improved predictions of NMR parameters

(shifts and coupling constants)

which are stuck at about  $\pm 0.2$  ppm since 20 years and improved only by a factor of 2 over more than 50 years, despite the enormous progress of computer technology.

