Constants of Physics and Mathematics
a selection compiled by Stanislav Sýkora, Extra Byte, Castano Primo, Italy.
Stan's Library, ISSN 2421-1230, Vol.I., First release March 1, 2005. Permalink via DOI:  10.3247/SL2Phys07.001
Based on the latest CODATA 2010 values and their successive improvements!
Physics BOOKS | SI Units | SI Dimensions MATHEMATICAL Constants (on a separate page)            Physics LINKS | Stan's HUB
This is a constant-at-a-glance list. You can also download a PDF version for off-line use. But keep coming back, the list is growing!
Constant Value Dimension Alias Definition & Notes
Universal constants used in too many categories to constrain their scope 
Speed of light c  2.997 924 580 e+8  m.s-1 m/s  Assigned (see SI units) 
Permeability of vacuum μ0  12.566 370 614 359 ... e-7  kg.m.s-2.A-2 H/m | N/A2 = 4π.10-7. Assigned.
Permittivity of vacuum ε0  8.854 187 817 620 ... e-12  kg-1.m-3.s4.A2 F/m  = 1 / (c2 μ0). Assigned.
Gravitation constant G  6.673 84[80] e-11  kg-1.m3.s-2   force = G M1M2 / r122
Planck constant h  6.626 069 57[29] e-34  kg.m2.s-1 J.s  = (energy transfer quantum)/(channel frequency)
Angular Planck constant  1.054 571 726[47] e-34  kg.m2.s-1 J.s  = h/2π, the angular momentum quantum
Charge/Quantum ratio  2.417 989 348[53] e+14  kg-1.m-2.s2.A A/J  = e / h 
Elementary charge e  1.602 176 565[35] e-19  s.A  C   
Quantum/Charge ratio  4.135 667 52[10] e-15  kg.m2.s-2.A-1 J/A  = h / e 
Fine structure constant α  7.297 352 5698[24] e-3  Dimensionless    = μ0 c e2 / 2h.
Inverse of fine structure constant 137.035 999 074[45]  Dimensionless    = 1/α = 2h / (μ0 c e2). See ref.[1].
Boltzmann constant k  1.380 6488[13] e-23  kg.m2.s-2.K-1 J/K  Sets thermodynamic temperature 
Planck mass mp  2.176 51[13] e-8  kg    mp2 = (h/2π) c / G 
Planck time tp  5.391 06[32] e-44  s    = (h/2π) / (mpc2)
Planck length lp  1.616 199[97] e-35  m    = ctp 
Planck temperature  1.416 833[85] e+32  K    = mpc2 / k
Electromagnetic constants other than those already listed 
Impedance of vacuum Z0  376.730 313 461 ...  kg.m2.s-3.A-2 Ω  Derived from assigned's: Z02 = μ00.
Magnetic flux quantum Φ0  2.067 833 758[46] e-15  kg.m2.s-2.A-1 Wb  = h / 2e 
Josephson constant KJ  4.835 978 70[11] e14  kg-1.m-2.s2.A Hz/V  = 2e / h . Conventional: 483597.9 GHz/V
von Klitzing constant RK  2.581 280 744 34[84] e+4  kg.m2.s-3.A-2 Ω  = h / e2.  Conventional: 25812.807 Ω
Conductance quantum G0  7.748 091 7346[25] e-5  kg-1.m-2.s3.A2 S  = 2e2 / h = 2 / RK
Inverse of conductance quantum  1.290 640 372 17[42] e+4  kg.m2.s-3.A-2 Ω  = RK / 2 
Electromagnetic radiation constants. For solar constant, see solar system 
Stefan-Boltzmann const. σ  5.670 373[21] e-8  kg.s-3.K-4 W/m2.K4 = 2 π5 k4 / 15 h3 c2 
1st radiation constant c1  3.741 771 53[17] e-16  kg.m4.s-3 W.m2 = 2 π h c2 
2nd radiation constant c2  1.438 7770[13] e-2  m.K    = h c / k 
Wien λ displacement constant λmaxT  2.897 7721[26] e-3  m.K    = c2 / 4.9651423... 
Wien f displacement constant f/T  5.878 9254[53] e+10  s-1.K-1 Hz/K   
Max. luminous efficacy: absolute  683  cd.sr.kg-1.m-1.s3 lm/W  100% efficient, ideal 555 nm light source. 
Max. luminous efficacy: black-body  95  cd.sr.kg-1.m-1.s3 lm/W  Achieved at 7000 °K 
Solar luminous efficacy  93  cd.sr.kg-1.m-1.s3 lm/W  see Wikipedia 
Solar illuminance  1.280[10] e5  cd.sr.m-2 lx  in the brightest sunlight, on Earth 
Electron and atomic physics constants 
Rydberg constant R∞  1.097 373 156 8539[55] e+7  m-1 m-1 = c α2 me / 2h 
Hartree energy EH  4.359 744 34[19] e-18  kg.m2.s-2 J  = α2 me c2 = 2h c R∞ 
Bohr radius  5.291 772 1092[17] e-11  m  m  = α / (4π R∞) 
Bohr magneton μB  9.274 009 68[20] e-24  m2.A J/T  = (1/2)(h/2π)(e/me) 
Bohr magneton in Hz/T  1.399624555[31] e+10  kg-1.s.A Hz/T  = μB/h = [Larmor frequency]/[g-factor]; ~ 14 GHz/T 
Quantum of circulation  3.636 947 5520[24] e-4  m2.s-1 m2/s = h / 2me 
Richardson constant  1.20173 e+6  A.m-2.K-2   = 4πemek2 / h3; arises in thermionic emission 
Electron (stable lepton, charge -1, spin 1/2, fermion, its antiparticle positron has positive charge) 
Electron rest mass me  9.109 382 91[40] e-31  kg    = 5.485 799 0946[22] e-4 u 
Electron rest energy (mec2)  8.187 105 06[36] e-14  kg.m2.s-2 J  = 0.510 998 928[11] MeV 
Electron charge/mass ratio  - 1.758 820 088[39] e11  kg-1.s.A C/kg  = e / me 
Compton wavelength of electron λC,e  2.426 310 2389[16] e-12  m    = h / c me 
Classical electron radius re  2.817 940 3267[27] e-15  m    = e2 / (4πε0mec)
Thomson cross section σe  0.665 245 8734[13] e-28  m2   = (8π/3) re2
Electron magnetic moment μe  - 9.284 764 30[21] e-24  m2.A J/T   
Electron g-factor ge  - 2.002 319 304 361 53[53]  Dimensionless    = (μe / μB) / Se 
Electron magnetic moment anomaly  1.159 652 180 76[27] e-3  Dimensionless    = (abs(ge) - 2) / 2 
Electron gyromagnetic ratio γe/2π  28.024 952 66[62] e+9  kg-1.s.A Hz/T  = μe / (hSe); ~ 28 GHz/T 
Electron/Proton mass ratio  5.446 170 2178[22] e-4  Dimensionless     
Electron/Proton magnetic moments ratio  - 658.210 6848[54]  Dimensionless     
Electron/Proton magnetic moments ratio  - 658.227 597 1[72]  Dimensionless    Shielded in water; standard conditions 
Physico-chemical constants 
Atomic mass constant u  1.660 538 921[73] e-27  kg    Mass of 12C nuclide / 12
Molar mass of  12C  12 e-3  kg    Assigned 
Molar mass constant  1.0 e-3  kg.mol-1 kg/mol  Assigned 
Boltzmann constant k  1.380 6488[13] e-23  kg.m2.s-2.K-1 J/K  Sets thermodynamic temperature 
Boltzmann constant in eV/K  8.617 3324[78] e-5  kg.m2.s-3.A-1.K-1 V/K  = k/e. Electrochemical potential ~ (k/e)T ln(c1/c2) 
Avogadro's number NA  6.022 141 29[27] e+23  mol-1 count/mol  ~ 602 Z (Zetta) particles in a mole of substance 
Molar Planck constant  3.990 312 7176[28] e-10  kg.m2.s-1.mol-1 J.s/mol  = h NA 
Molar Planck constant by c  0.119 626 565 779[84]  kg.m3.s-2.mol-1 J.m/mol  = h c NA 
Electron molar mass  5.485 799 0946[22] e-7  kg.mol-1 kg/mol  = me NA 
Electron molar charge  - 9.648 533 65[21] e+4  s.A.mol-1 C/mol  = e NA. 
Faraday constant F  +9.648 533 65[21] e+4  s.A.mol-1 C/mol  = |electron molar charge|. 
Molar gas constant R  8.314 4621[75]  kg.m2.s-2.K-1.mol-1 J/K.mol  = k NA 
Molar volume of ideal gas Vm  22.413 968[20] e-3  m3.mol-1 m3/mol = (RT/p)  at T=273.15 K, p=101325 Pa 
Loschmidt constant n0  2.686 7805[24] e+25  m-3 count/m3 = NA / Vm at T=273.15 K, p=101325 Pa 
Sackur-Tetrode constant S0/R  - 1.164 8708[23]  Dimensionless    (5/2)+ln[(2πmukT/h2)(kT/p)] at T=1K, p=101325 Pa. 
Basic nuclear physics data (those listed in CODATA) 
Fermi coupling GF/(hc/2π)3 3.670 336[31] e+48  kg-2   = (1.026 8365[88] e-5) / mp2
Fermi coupling in eV-2  1.166 364[5] e+4  eV-2    
Weak mixing angle sin2θW  0.2223[21]  Dimensionless    = 1- (mW/mZ)2
Nuclear magneton μN  5.050 783 53[11] e-27  m2.A J/T  = (1/2)(h/2π)(e/mp) 
Nuclear magneton in Hz/T  7.622 593 57[17] e+6  kg-1.s.A Hz/T  = μN/h = [Larmor frequency]/[g-factor]; ~ 7.6 MHz/T 
Proton (stable baryon, nucleon, hadron, charge +1, spin 1/2, fermion, parity +, isospin 1/2, its anti-particle antiproton has opposite charge) 
Proton rest mass mp  1.672 621 777[74] e-27  kg    1.007 276 466 812[90] u 
Proton rest energy (mc2)  1.503 277 484[66] e-10  kg.m2.s-2 J  938.272 046[21] MeV; quarks composition: uud 
Proton / electron mass ratio  1836.15267245[75]  Dimensionless    inverse: 5.4461702178[22]e-4 
Compton wavelength of proton λC,p  1.321 409 856 23[94] e-15  m    λC,p = h / c mp 
Proton rms charge radius  0.8775[51] e-15  m     
Proton magnetic moment  1.410 606 743[33] e-26  m2.A J/T  μp 
Proton g-factor  5.585 694 713[46]  Dimensionless    = μp / (Sp μN) 
Proton gyromagnetic ratio  42.577 4806[10] e+6  kg-1.s.A Hz/T  γp = μp / h Sp. 
Proton gyromagnetic ratio shielded 42.576 388 1[12] e+6  kg-1.s.A Hz/T  In H2O,  standard conditions
Proton magnetic shielding  25.694[14] e-6  Dimensionless    Relative value for pure water at 25 °C 
Electric dipole moment  < 8.7 e-45  m.s.A  C.m  < 5.4 e-24 e.cm; existence not confirmed 
Electric polarizibility  1.20[6] e-48  m3    
Magnetic polarizibility  1.9[5] e-49  m3    
Neutron (baryon, nucleon, hadron, charge 0, spin 1/2, fermion, parity +, isospin 1/2, its anti-particle is antineutron) 
Neutron rest mass mn  1.674 927 351[74] e-27  kg    1.008 664 916 00[43] u 
Neutron rest energy (mc2)  1.505 349 631[66] e-10  kg.m2.s-2 J  939.565 379[21] MeV; quarks composition udd 
Compton wavelength of neutron λC,n  1.319 590 9068[11] e-15  m    λC,n = h / c mn 
Neutron half-life time  881.5[15]  s    Beta-decay into proton + e- + νe 
Neutron magnetic moment  - 0.966 236 47[23] e-26  m2.A J/T  μn 
Neutron g-factor  - 3.826 085 45[90]  Dimensionless    = μn / (Sn μN) 
Neutron gyromagnetic ratio  29.164 6943[69] e+6  kg-1.s.A Hz/T  γn = μn / h Sn 
Electric dipole moment  < 4.6 e-47  m.s.A  C.m  < 2.9 e-26 e.cm; existence not confirmed 
Electric polarizibility  1.16[15] e-48  m3    
Magnetic polarizibility  3.7[20] e-49  m3    
Deuteron (stable nuclide, protons 1, neutrons 1, charge +1, spin 1, boson) 
Deuteron rest mass  3.343 583 48[15] e-27  kg    2.013 553 212 712[77] u 
Deuteron rest energy (mc2)  3.005 062 97[13] e-10  kg.m2.s-2 J  1875.612 859[41] MeV 
Deuteron rms charge radius  2.1424[21] e-15  m     
Deuteron magnetic moment  0.433 073 489[10] e-26  m2.A J/T   
Deuteron g-factor  0.857 438 2308[72]  Dimensionless     
Deuteron gyromagnetic ratio  6.535 903 381 41 e+6  kg-1.s.A Hz/T   
Deuteron quadrupole moment  4.581 e-50  m2.s.A C.m2  0.2859 e(fm)2 
Triton (stable nuclide, protons 1, neutrons 2, charge +1, spin 1/2, fermion) 
Triton rest mass  5.007 356 30[22] e-27  kg    3.015 500 7134[25] u 
Triton rest energy (mc2)  4.500 387 41[20] e-10  kg.m2.s-2 J  2808.921 005[62] MeV 
Triton half-life time  3.888[70] e+8  s    = 12.32 years; beta-decay into 3He + e- + νe 
Triton magnetic moment  1.504 609 447[38] e-26  m2.A J/T   
Triton g-factor  5.957 924 896[76]  Dimensionless     
Triton gyromagnetic ratio  45.413 674 6[13] e+6  kg-1.s.A Hz/T   
Helion (stable nuclide, protons 2, neutrons 1, charge +2, spin 1/2, fermion, nuclide) 
Helion rest mass  5.006 412 34[22] e-27  kg    3.014 932 2468[25] u 
Helion rest energy (mc2)  4.499 539 02[20] e-10  kg.m2.s-2 J  2808.391 482[62] MeV 
Helion magnetic moment  - 1.074 617 486[27] e-26  m2.A J/T  Shielded 
Helion g-factor  - 4.255 250 613[50]  Dimensionless     
Helion gyromagnetic ratio  32.434 101 98[90] e+6  kg-1.s.A Hz/T  Shielded 
Alpha particle (stable nuclide, protons 2, neutrons 2, charge +2, spin 0, magnetic moment 0, boson) 
α-particle rest mass  6.644 656 75[29] e-27  kg    4.001 506 179 125[62] u 
α-particle rest energy (mc2)  5.971 919 67[26] e-10  kg.m2.s-2 J  3727.379 240[82] MeV 
Particle physics data (source: Particle Data Group) 
Neutrinos ν (stable leptons, charge 0, exist in e,μ,τ flavors, each has matter / anti-matter version with opposite chirality, spin 1/2, fermions) 
Electron neutrino νe rest energy (mc2)  max 3.5 e-13  kg.m2.s-2 J  0 to 2.2 eV 
Muon neutrino νμ rest energy (mc2)  max 0.27 e-13  kg.m2.s-2 J  0 to 0.17 MeV 
Tau neutrino ντ rest energy (mc2)  max 24.8 e-13  kg.m2.s-2 J  0 to 15.5 MeV 
Muon μ± (lepton, charge ±1, matter μ-, antimatter μ+, spin 1/2, fermion) 
Muon rest energy (mc2)  1.692 833 667[86] e-11  kg.m2.s-2 J  105.658 3715[35] MeV 
Muon rest mass  1.883 531 475[96] e-28  kg    0.113 428 9267[29] u 
Muon magnetic moment  - 4.490 448 07[15] e-26  m2.A J/T   
Muon g-factor gμ  - 2.002 331 8418[13]  Dimensionless    (μ / μB) * (m / me) / spin 
Muon magnetic moment anomaly  1.165 920 91[63] e-3  Dimensionless    (abs(gμ) - 2) / 2 
Muon gyromagnetic ratio  135.538 817[12] e+6  kg-1.s.A Hz/T  = μn / h Sn 
Muon half-life time  1.52 e-6  s     
Tau τ± (lepton, charge ±1, matter τ-, antimatter τ+, spin 1/2, fermion) 
Tau rest energy (mc2)  2.846 78[26] e-10  kg.m2.s-2 J  1776.82[16] MeV 
Tau rest mass  3.167 47[29] e-27  kg    1.907 49[17] u 
Tau half-life time  2.9 e-13  s     
Quarks with charge +2/3 (baryon number 1/3, exist in u,c,t flavors, each has matter / anti-matter versions with some property flipped, spin 1/2, fermions) 
u (up) quark rest energy (mc2)  3.8 e-13  kg.m2.s-2 J  2.4 MeV, stable 
c (charm) quark rest energy (mc2)  2.03 e-10  kg.m2.s-2 J  1.27 GeV, unstable 
t (top) quark rest energy (mc2)  2.743 e-8  kg.m2.s-2 J  171.2 GeV, terribly unstable 
Quarks with charge -1/3 (baryon number 1/3, exist in d,s,b flavors, each has matter / anti-matter versions with some property flipped, spin 1/2, fermions) 
d (down) quark rest energy (mc2)  7.7 e-13  kg.m2.s-2 J  4.8 MeV, stable 
s (strange) quark rest energy (mc2)  1.67 e-11  kg.m2.s-2 J  104 MeV, unstable 
b (bottom) quark rest energy (mc2)  6.7 e-10  kg.m2.s-2 J  4.2 GeV, unstable 
Pions π± (mesons, hadrons, charge ±1, anti-particles of each other, spin 0, boson, parity -, isospin 1) 
Pions π± rest energy (mc2)  2.236 1607[56] e-11  kg.m2.s-2 J  139.570 18[35] MeV 
Pions π± rest mass  2.488 0643[62] e-28  kg    0.149 834 75[37] u 
Pions π± half-life time  2.6 e-8  s    quarks composition: π+: ud', π-: du' 
Pion π0 (meson, hadron, charge 0, its own antiparticle, spin 0, boson, parity -,C-parity +, isospin 1) 
Pion π0 rest energy (mc2)  2.162 5634[96] e-11  kg.m2.s-2 J  134.976 60[60] MeV 
Pion π0 rest mass  2.406 176[11] e-28  kg    0.144 903 34[64] u 
Pion π0 half-life time  8.4 e-17  s    quarks composition: (uu'-dd')/&radiv;2 
Kaons K± ('strange' mesons, hadrons, charge ±1, anti-particles of each other, spin 0, boson, parity -, isospin 1/2) 
Kaons K± rest energy (mc2)  7.909 58[26] e-11  kg.m2.s-2 J  493.677[16] MeV 
Kaons K± rest mass  8.800 591[29] e-28  kg    0.529 984[17] u 
Kaons K± half-life time  1.2380[21] e-8  s    quarks composition: K+: us', K-: su' 
Kaon K0 ('strange' meson, hadron, charge 0, self-antiparticle, spin 0, boson, isospin 1/2, parity -) 
Kaon K0 rest energy (mc2)  7.972 65[38] e-11  kg.m2.s-2 J  497.614[24] MeV; quarks: see below 
Kaon K0 rest mass  8.870 77[42] e-28  kg    0.534 211[26] u 
Kaon K0L half-life time (long)  5.116[20] e-8  s    quarks composition: (ds'+sd')/√2 
Kaon K0S half-life time (short)  8.953[5] e-11  s    quarks composition: (ds'-sd')/√2 
Eta mesons η and η' (hadrons, charge 0, antiparticles of each other, spin integer, bosons,  
η rest energy (mc2)  8.777 57[38] e-11  kg.m2.s-2 J  547.853[24] MeV 
η rest mass  9.766 36[42] e-28  kg    0.588 144[25] u 
η half-life time  5.0[3] e-19   s    quarks composition: (uu'+dd'-2ss')/√6 
η' rest energy (mc2)  1.53434[38] e-10  kg.m2.s-2 J  957.66[24] MeV 
η' rest mass  1.70718[43] e-27  kg    1.02809[26] u 
η' half-life time  3.2[2] e-21   s    quarks composition: (uu'+dd'+ss')/√3 
Lambda hyperons (baryons, charge 0 or +1, spin 1/2, fermions, parity +; predicted only: top Λt+, quarks udt, but t-quark decays before it hadronizes) 
Λ0 rest energy (mc2)  1.7875211[96] e-10  kg.m2.s-2 J  1.1156830[60] GeV; charge 0 
Λ0 rest mass  1.988885[11] e-27  kg    1.1977349[64] u 
Λ0 half-life time  2.631[20] e-10  s    quarks composition: uds 
Bottom Λ0b rest energy (mc2)  9.0046[26] e-10  kg.m2.s-2 J  5.6202[16] GeV; charge 0 
Bottom Λ0b rest mass  1.00189[29] e-26  kg    6.0335[17] u 
Bottom Λ0b half-life time  1.409[55] e-12  s    quarks composition: udb 
Charmed Λ+c rest energy (mc2)  3.66331[22] e-10  kg.m2.s-2 J  2.28646[14] GeV; charge +1 
Charmed Λ+c rest mass  4.07599[25] e-27  kg    2.45462[15] u 
Charmed Λ+c half-life time  2.000[60] e-13  s    quarks composition: udc 
Sigma hyperons with spin 1/2 (barions, charge -1, 0, +1 or +2, fermions, parity +; predicted only: udb, uut, udt, ddt) 
Σ+ rest energy (mc2)  1.90558[11] e-10  kg.m2.s-2 J  1.189370[70] GeV; charge +1 
Σ+ rest mass  2.12024[12] e-27  kg    1.276841[75] u 
Σ+ half-life time  8.018[26] e-11  s    quarks composition: uus 
Σ0 rest energy (mc2)  1.910823[38] e-10  kg.m2.s-2 J  1.192642[24] GeV; charge 0 
Σ0 rest mass  2.126077[43] e-27  kg    1.280353[26] u 
Σ0 half-life time  7.40[70] e-20  s    quarks composition: uds 
Σ- rest energy (mc2)  1.918525[48] e-10  kg.m2.s-2 J  1.197449[30] GeV; charge -1 
Σ- rest mass  2.13465[53] e-27  kg    1.285514[32] u 
Σ- half-life time  1.479[11] e-10  s    quarks composition: dds 
Charmed Σc++ rest energy (mc2)  3.93177[29] e-10  kg.m2.s-2 J  2.45402[18] GeV; charge +2 
Charmed Σc++ rest mass  4.37469[32] e-27  kg    2.63450[19] u 
Charmed Σc++ half-life time  3.00[40] e-22  s    quarks composition: uuc 
Charmed Σc+ rest energy (mc2)  3.92998[64] e-10  kg.m2.s-2 J  2.45290[40] GeV; charge +1 
Charmed Σc+ rest mass  4.37269[71] e-27  kg    2.63330[43] u 
Charmed Σc+ half-life time  >1.4 e-22  s    quarks composition: udc 
Charmed Σc0 rest energy (mc2)  3.93136[29] e-10  kg.m2.s-2 J  2.45376[18] GeV; charge 0 
Charmed Σc0 rest mass  4.37422[32] e-27  kg    2.63422[19] u 
Charmed Σc0 half-life time  3.0 e-22  s    quarks composition: ddc 
Bottom Σb+ rest energy (mc2)  9.3051[62] e-10  kg.m2.s-2 J  5.8078[39] GeV; charge +1 
Bottom Σb+ rest mass  1.03533[69] e-26  kg    6.2349[42] u 
Bottom Σb+ half-life time  ?  s    quarks composition: uub 
Bottom Σb- rest energy (mc2)  9.3170[43] e-10  kg.m2.s-2 J  5.8152[27] GeV; charge -1 
Bottom Σb- rest mass  1.03665[48] e-26  kg    6.2429[30] u 
Bottom Σb- half-life time  ?  s    quarks composition: ddb 
Sigma* hyperons with spin 3/2 (barions, charge -1, 0, +1 or +2, fermions, parity +; predicted only: uub, udb, ddb, uut, udt, ddt) 
Σ*+ rest energy (mc2)  2.21549[64] e-10  kg.m2.s-2 J  1.38280[40] GeV; charge +1 
Σ*+ rest mass  2.46506[71] e-27  kg    1.48450[43] u 
Σ*+ half-life time  1.840[40] e-23  s    quarks composition: uus 
Σ*0 rest energy (mc2)  2.21693[16] e-10  kg.m2.s-2 J  1.38370[10] GeV; charge 0 
Σ*0 rest mass  2.46667[18] e-27  kg    1.48546[11] u 
Σ*0 half-life time  1.80[30] e-23  s    quarks composition: uds 
Σ*- rest energy (mc2)  2.22254[80] e-10  kg.m2.s-2 J  1.38720[50] GeV; charge -1 
Σ*- rest mass  2.47291[89] e-27  kg    1.48922[54] u 
Σ*- half-life time  1.670[90] e-23  s    quarks composition: dds 
Charmed Σ*++c rest energy (mc2)  4.03492[96] e-10  kg.m2.s-2 J  2.51840[60] GeV; charge +2 
Charmed Σ*++c rest mass  4.4894[11] e-27  kg    2.70361[64] u 
Charmed Σ*++c half-life time  4.40[60] e-23  s    quarks composition: uuc 
Charmed Σ*+c rest energy (mc2)  4.0335[37] e-10  kg.m2.s-2 J  2.5175[23] GeV; charge +1 
Charmed Σ*+c rest mass  4.4879[41] e-27  kg    2.7026[25] u 
Charmed Σ*+c half-life time  > 3.9 e-23  s    quarks composition: udc 
Charmed Σ*0c rest energy (mc2)  4.03428[80] e-10  kg.m2.s-2 J  2.518 GeV; charge 0 
Charmed Σ*0c rest mass  4.48874[89] e-27  kg    2.70318[54] u 
Charmed Σ*0c half-life time  4.10[50] e-23  s    quarks composition: ddc 
Xi hyperons (barions, charge -1, 0, +1, spin 1/2, fermions, parity +; predicted only: ucc, ubb, dbb, ucb, dcb) 
Ξ0 rest energy (mc2)  2.106638[32] e-10  kg.m2.s-2 J  1.31486[20] GeV; charge 0 
Ξ0 rest mass  2.34395[35] e-27  kg    1.41156[21] u 
Ξ0 half-life time  2.900[90] e-10  s    quarks composition: uss 
Ξ- rest energy (mc2)  2.11697[21] e-10  kg.m2.s-2 J  1.32131[13] GeV; charge -1 
Ξ- rest mass  2.35544[23] e-27  kg    1.41848[14] u 
Ξ- half-life time  1.639[15] e-10  s    quarks composition: dss 
Charmed Ξc+ rest energy (mc2)  3.95401[64] e-10  kg.m2.s-2 J  2.46790[40] GeV; charge +1 
Charmed Ξc+ rest mass  4.39943[71] e-27  kg    2.64940[43] u 
Charmed Ξc+ half-life time  4.42[26] e-13  s    quarks composition: usc 
Charmed Ξc0 rest energy (mc2)  3.95898[64] e-10  kg.m2.s-2 J  2.47100[40] GeV; charge 0 
Charmed Ξc0 rest mass  4.40496[71] e-27  kg    2.65273[43] u 
Charmed Ξc0 half-life time  1.12[13] e-13  s    quarks composition: dsc 
Double charmed Ξcc+ rest energy (mc2)  5.6379[14] e-10  kg.m2.s-2 J  3.51890[90] GeV; charge +1 
Double charmed Ξcc+ rest mass  6.2730[16] e-27  kg    3.77769[97] u 
Double charmed Ξcc+ half-life time  < 3.3 e-14  s    quarks composition: dcc 
Bottom Ξb0 rest energy (mc2)  9.2798[48] e-10  kg.m2.s-2 J  5.7920[30] GeV; charge 0 
Bottom Ξb0 rest mass  1.0325[53] e-26  kg    6.2180[32] u 
Bottom Ξb0 half-life time  1.42[28] e-12  s    quarks composition: usb 
Bottom Ξb- rest energy (mc2)  9.2815[48] e-10  kg.m2.s-2 J  5.7929[30] GeV; charge -1 
Bottom Ξb- rest mass  1.0335[53] e-26  kg    6.2191[32] u 
Bottom Ξb- half-life time  1.42[28] e-12  s    quarks composition: dsb 
Ξ resonances:  {uss, S=3/2, 1.53180[32] GeV}, {dss, S=3/2, 1.53500[60] GeV}, {usc, S=1/2, 2.57570[31] GeV}, {dsc, S=1/2, 2.57800[29] GeV, 1.1e-13 s},  
Omega hyperons (barions, charge -1 or 0, spin 1/2 or 3/2, fermions, parity +; predicted only: scc, scb, sbb, ccc, ccb, cbb, bbb) 
Ω- rest energy (mc2)  2.67956[46] e-10  kg.m2.s-2 J  1.67245[29] GeV; charge -1, spin 3/2 
Ω- rest mass  2.98141[52] e-27  kg    1.79544[31] u 
Ω- half-life time  8.21[11] e-11  s    quarks composition: sss 
Charmed Ω0c rest energy (mc2)  4.3219[41] e-10  kg.m2.s-2 J  2.6975[26] GeV; charge 0, spin 1/2 
Charmed Ω0c rest mass  4.8087[28] e-27  kg    2.8959[28] u 
Charmed Ω0c half-life time  6.9[12] e-14  s    quarks composition: ssc 
Bottom Ω-b rest energy (mc2)  9.700[11] e-10  kg.m2.s-2 J  6.0544[68] GeV; charge -1, spin 1/2 
Bottom Ω-b rest mass  1.0793[12] e-26  kg    6.49967[73] u 
Bottom Ω-b half-life time  1.13[53] e-12  s    quarks composition: ssb 
W ± gauge boson (charge ±1, matter W -, antimatter W+, spin 1) 
W boson rest energy (mc2)  1.28791[24] e-8  kg.m2.s-2 J  80.385[15] GeV 
W boson rest mass  1.432993[25] e-25  kg    86.296[16] u 
Z gauge boson (charge 0, spin 1) 
Z boson rest energy (mc2)  1.460986[33] e-8  kg.m2.s-2 J  91.1876[21] GeV 
Z boson rest mass  1.625566[37] e-25  kg    97.8939[23] u 
Higgs boson H0 (charge 0, spin 0, predicted only, not found) 
H0 rest energy (mc2)  2.0042[34] e-8  kg.m2.s-2 J  125.09[21] GeV; ATLAS/CMS 26 Mar 2015 
H0 rest mass  2.2299[37] e-25  kg    134.29[23] u 
H0 half-life time  1.56 e-22  s    h/(2πΓ), predicted Γ = 4.21 MeV 
Cosmic microwave background (CMB) 
Mean apparent CMB temperature  2.72548[57]  K  Kelvin  From CMB black-body radiation spectrum 
rms variations of CMB temperature  1.8 e-7  K    18 μK; deviations from perfect isotropy 
Peak frequency density νmax  1.6023 e+11  Hz    160.23 GHz, corresponding to λ = 1.871 mm 
Peak wavelength density λmax  1.063 e-3  m    1.063 mm, corresponding to 318.7 GHz 
Metrics of the known Universe  (for the prefixes M (Mega), G (Giga), Z (Zetta), and Y (Yocto), click here)  
Diameter visible by Hubble telescope  8.80[10] e+26  m    ~ 93 G light-years 
Volume of the visible sphere  3.60[10] e+80  m3   ~ 420 MY light-years3 (Mega-Yocta)
Mass contained therein  3.56[10] e+54  kg    ~ 3.56 MYY kg; mostly dark energy & matter 
Mean density  9.90[20] e-27  kg.m-1 kg/m  ~ 9.9 e-30 g/ml 
Age, assuming Big Bang theory  4.366[54] e+17  s    ~ 13.75±0.17 G years 
Mean expansion rate  2.29[13] e-18  s-1   ~ 70.8±4.0 (km/s)/Mpc (km/s per Megaparsec)
Number of stars  3.0[10] e+23  Dimensionless    ~ 300 Z , or 0.5 mols of stars 
Number of galaxies  1.25[20] e+11  Dimensionless    ~ 125 G, or 0.2 pico-mols of galaxies 
Number of fundamental particles  1.00[25] e+80  Dimensionless    ~ 100 MYYY (Mega-Yocto-Yocto-Yocto) 
Mean concentration of particles  0.28[10]  m-3 counts/m3 ~ 4.5e-28 molar "solution" 
Milky Way galaxy. Type BSc (barred spiral), lentil-shaped, 9 arms, center in the direction of Sagittarius constellation 
Diameter  1.04[10] e+21  m    100000 - 120000 light-years (30 - 37 Kpc) 
Thickness  1.00[10] e+19  m    ~1000 light-years (~300 pc) 
Mass  2.50[50] e+42  kg    1.25[25] e+12 solar masses 
Number of stars  3.0[10] e+11  Dimensionless  count  ~300 e+9 
Oldest known star  4.156[50] e+17  s    13.2 e+9 years 
Speed with respect to CMB  5.520[60] e+5  m.s-1    552 ± 6 km/s; the absolute galaxy motion 
Angle between galactic plane and the ecliptic  1.05[10]  rad    ~60 degrees 
Milky Way arms look like logarithmic-spirals; galaxy is a kind of vortex and its apparent features keep changing faster than the motions of its stars 
Arms pattern rotation (apparent)  1.58[15] e+15  s    ~50 million years; move like ripple patterns 
Milky Way central bar  
Bar pattern rotation period (apparent)  5.20[47] e+14  s    15-18 million years; moves like a ripple pattern 
Solar system data; see also NASA Planetary Fact Sheets 
Distance to Milky Way galaxy center  2.57[10] e+20  m    27200 ±1100 light-years 
Rotation around galaxy center: period  7.49[39] e+15  s    225 - 250 million years 
Rotation around galaxy center: orbital speed  2.20 e+5  m.s-1  m/s  approximately opposed to absolute galaxy motion 
Absolute speed with respect to CMB  3.7 e+5  m.s-1  m/s  370 km/s; 0.123% of the speed of light 
Extension (max.aphelion of a minor planet)  1.598 e+14  m    over 1068 au; planetoid (87269) 2000 OO67 
Distance to nearest-neighbour system  3.970[50] e+16  m    4.2 light-years; Proxima Centauri 
The Sun; spectral class G2V, main sequence (V) yellow dearf (G2). Composition: 73.46% H, 24.85% He, 0.77% O, 0.29 C, 0.16% Fe, 0.12% Ne, 0.09% N 
Mass  1.98910[20] e+30  kg    330'000 times that of Earth 
Mean radius  6.9550[50] e+8  m    109.2 times that of Earth 
Flattening  9 e-6  Dimensionless    (equatorial - polar)/equatorial radii 
Volume  1.41226[50] e+27  m3   1'304'000 times that of Earth 
Mean density  1.408 e+3  kg.m-3 kg/m3 0.255 times that of Earth 
Surface gravity on equator  2.74 e+2  m.s-2 m/s2 27.94 g 
Escape velocity  6.176 e+2  m.s-1 m/s  55.2 times that of Earth 
Photosphere temperature  5778  K    In the layer emitting the light we see 
Absolute visual magnitude  +4.83  Dimensionless    see stellar magnitudes (Conventional constants) 
Radiance Isol  2.009 e+7  W.m2.sr-1   total from the layer emitting the light we see 
Luminose efficacy  98  lm.kg-1.m-2.s3  lm/W  see "Electromagnetic radiation constants" 
Luminosity Lsol  3.841[14] e+26  kg.m2.s-3  W  ~3.75 e+28 lm 
Loss of mass due to elmag radiation  4.273[16] e+9  kg.s-1  kg/s  <electromagnetic power output> / c2 
Total neutrino emissions  1.830[50] e+38  s-1  count/s  Mean value (very variable) 
Age  1.4420[14] e+17  s    4.57 e+9 years 
Planet Earth in relation to the Sun and the Solar system. The orbit of Earth defines the ecliptic plane. 
Earth aphelion, largest distance from Sun  1.52098232 e+11  m    1.01671388 au 
Earth perihelion, smallest distance from Sun  1.47098290 e+11  m    0.98329134 au 
Longitude of ascending node  6.08665006  rad    348.73936 degrees 
Argument of perihelion  1.9933026  rad    114.20783 degrees 
Semi-major orbital axis  1.49598261 e+11  m    1.00000261 au 
Earth orbit inclination to Sun equator  0.1249  rad    7.155 degrees 
Earth orbit inclination to invariable plane  0.0275533  rad    1.57869 degrees 
Earth orbital excentricity  0.01671123  Dimensionless    will be about 0.015 after 5000 years 
Mean anomaly of Earth orbit  3.5751716 e+2  Dimensionless     
Earth mean orbital velocity  2.9780 e+4  m.s-1 m/s  107200 km/h 
Sun visual brightess from the Earth  -26.74  Dimensionless    see stellar magnitudes (Conventional constants) 
Sun angular diameter seen from the Earth  0.00919 - 0.00951  rad    Varies between 0.527 and 0.545 degrees 
Solar constant (mean value for Earth)  1.36594[48] e3  kg.s-3 W/m2 Elmag irradiation from Sun at 1 AU distance 
Solar neutrinos flux on Earth surface  6.50[10] e+14  m-2.s-1   Mean count per m2 per second; very variable 
Satellites count  1 natural  Dimesionless    994 artificial (December 2011) 
Planets: see the PDF document SOLAR SYSTEM PLANETS AT A GLANCE and the NASA Planetary Fact Sheets 
Number of planets  8  Dimensionless  count  Planetary data table 
Minor planets; see also NASA Facts Sheets: Pluto, Chiron, Asteroids, Comets,  
Registered, with known orbits  583'767  Dimensionless  count  Apr 2012; ~3000 are added every month 
Numbered minor planets  326'266  Dimensionless  count  Apr 2012 
Named minor planets  17'055  Dimensionless  count  Apr 2012 
Planet Earth (Terra) data, other than those listed above; see also NASA Earth Fact Sheet 
Age  1.4327[14] e+17  s    4.54 e+9 years 
Global composition in weight %  Fe 32.1, O 30.1, Si 15.1, Mg 13.9, S 2.9, Ni 1.8, Ca 1.5, Al 1.4, the rest: 1.2 
Atmospheric composition in weight %  N2 78.08, O2 20.95, Ar 0.93, CO2 0.038, the rest: 0.002; extra: 1% of H2O wapor (variable) 
Mass  5.9736 e+24  kg     
Volume  1.08321 e+21  m3   108.321 km3 
Mean density  5.515 e+3  kg.m-3 kg/m3 5.515 g/cm3
Mean radius  6.3710 e+6  m    this is volumetric mean 
Equatorial radius  6.3781 e+6  m    6378.1 km; circumpherence 40075.017 km 
Polar radius  6.3568 e+6  m    6356.8 km; circumpherence 40007.860 km 
Flattening  0.00335  Dimensionless    f = (a-b)/a; a = equatorial, b = polar radius 
Surface area  5.100720 e+14  m2   5.100720 e+8 km2
Dry land surface area  1.48940 e+14  m2   1.48940 e+8 km (29.200 %)2
Surface temperature, mean  287.2  K    14.0 °C; range 184 to 331 K (-90 to 58 °C)) 
Surface pressure, mean  1.01325 e+5  kg.m-1.s-2 Pa  1 atm = 101325 Pa 
Equatorial surface gravity  9.780327  m.s-2 m/s2 0.99732 g 
Escape velocity  1.1186 e+4  m.s-1 m/s  11.186 km/s 
Albedo, geometric  0.367  Dimensionless     
Albedo, Bond  0.306  Dimensionless     
Sidereal rotation period  8.616410 e+4  s    0.99726968 days, or 23 h 56 m 4.100 s 
Equatorial rotation speed  465.1  m.s-1 m/s  0.4651 km/s (4.1579 % of escape volocity)) 
Axial tilt  0.40763819  rad    23.355948 °, or 23 ° 26' 21“.4119 
Radius of the core  3.485 e+6  m    3485 km 
Average lunar month  2.5514430[5] e+6  s    29 days+ 12 hours+ 44 minutes+ 3 seconds 
Conventional constants 
Molar mass constant  0.001  kg.mol-1 kg/mol  Assigned (exact) 
Molar mass of  12C  0.012  kg    Assigned (exact) 
Standard gravity acceleration  9.806 65  m.s-2 m/s2 Assigned. Called 1 g (gee).
Standard atmosphere  101 325  Pa    Assigned. Called 1 atm .
Stellar magnitudes. Reference points: Apparent brightness: bolometric, initially Vega was 0 (now it is +0.03). Absolute: the Sun is 4.83 (used to be 4.75)  
Stellar apparent magnitude unit  2.511 886 431 509 580 ...  Dimensionless  a ratio  1001/5 = 100.4; also stellar brightness 
Stellar absolute magnitude unit  2.511 886 431 509 580 ...  Dimensionless  a ratio  Brightness of a star when distant 10 parsecs 
Conventional engineering constants. See also Math constants pertinent to Engineering definitions 
dBm 
0 dBm power  0.001  kg.m2.s-3 Watts  1 mW; assigned 
0 dBm potential  0.774 596 669 241 483 ...  kg.m2.s-3.A-1 Volts  1 mW into 600 Ohm load 
0 dBm current  0.001 290 994 448 736 ...  A  Amperes  1 mW into 600 Ohm load 
dBW 
0 dBW power  1.0  kg.m2.s-3 Watts  1 W; assigned 
0 dBW potential  7.071 067 811 865 475 ...  kg.m2.s-3.A-1 Volts  sqrt(Z0); 1 W into 50 Ohm load Z0 
0 dBW current  0.141 421 356 237 310 ...  A  Amperes  sqrt(1/Z0); 1 W into 50 Ohm load Z0 
Conversion of dBW into dBm (additive)  +30  Dimensionless  dB  In terms of power 
Relative luminance Y of RGB color primaries: Y = 0.2126.R + 0.7152.G + 0.0722.B. More info ... 
Relative luminance of Red/RGB  0.2126  Dimensionless  a ratio   
Relative luminance of Green/RGB  0.7152  Dimensionless  a ratio  Human eye is most sensitive to green 
Relative luminance of Blue/RGB  0.0722  Dimensionless  a ratio   
Music and acoustics 
Frequency of the A4 reference note  440.0  s-1 Hz  ISO 16 
Full-octave frequency ratio  2.0 exact  Dimensionless  Ratio  C,C#,D,D#,E,F,F#,G,G#,A,A#,B,...next C 
Half-tone frequency ratio 21/12  1.059 463 094 359 295 ...  Dimensionless  Ratio  12 half-tones per octave, each worth 100 cents 
Conversion factors for entities tolerated by SI, as well as some others 
Energy & its equivalents 
Electron volt  1.602 176 565[35] e-19  kg.m2.s-2 J  Basic eV-to-SI conversion 
Electron volt to mass  1.782 661 845[39] e-36  kg    mass = energy/c2 
Electron volt to atomic units u  1.073 544 150[24] e-9  -  u  a mass equivalent 
Electron volt to frequency  2.417 989 348[53] e+14  s-1 Hz  frequency = energy/h 
Electron volt to half-life time  6.582 119 28[22] e-16  s    Inverse relationship: τ = h/(2πΓ) 
Joul to eV  6.241 509 34[14] e+18  -  eV  Basic SI-to-eV conversion 
Mass to eV  5.609 588 85[12] e+35  -  eV  energy = mass.c2 
Atomic unit u to eV  931.494 061[21] e+6  -  eV  a bit less than 1 GeV/atomic_unit  
Frequency (1 Hz) to eV  4.135 667 516[91] e-15  -  eV  energy = frequency*h 
Atomic mass constant u, mu  1.660 538 921[73] e-27  kg    Mass of 12C nuclide / 12 
Atomic mass energy (uc2)  1.492 417 954[66] e-10  kg.m2.s-2 J  931.494 061[21] MeV 
Length / Distance 
Astronomical unit ua, au  1.49597870[30] e+11  m  ~150 Gm  Mean Earth-to-Sun distance 
Light-year ly  9.4607304725808 e+15  m  ~9.5 Pm  Exact: light covers it in one Julian year 
Parsec pc (~ 32.6 ly)  3.08567757[60] e+16   m  ~30 Pm  Corresponds to au parallax of 1 second 
Time 
Hour  3.600 e+3  s    Exact: 3600 seconds 
Day  8.6400 e+4  s    Exact: 24 hours 
Julian year  3.1557600 e+7  s    Exact: 365.25 days 
Gregorian year (mean)  3.1556952 e+7  s    Exact: 365.2425 days 
Tropical year (drops ~0.53 s/century)  3.155692518747072 e+7  s    365.2421896698 days in year 2000 
Plane and solid angles 
1 radian in degrees  5.729577951308232... e+1  Dimensionless  °, degree  180/π; planar angle; 57° 17' 44.806247...'' 
1° degree in radians  1.745329251994330... e-2  Dimensionless  rad  π/180; planar angle 
1' minute in radians  2.908882086657215 ... e-4  Dimensionless  rad  π/180/60; planar angle 
1'' second in radians  4.848136811095359 ... e-6  Dimensionless  rad  π/180/60/60; planar angle 
1 steradian in degree2  3.282806350011744... e+3  Dimensionless  degree2  (180/π)2; for solid angle infinitesimals 
1 degree2 in steradians  3.046174197867086... e-4  Dimensionless  sr  (π/180)2; for solid angle infinitesimals 

Formats and Notes:

Formats of numeric values
Mantissa[Uncertainty] e±Exponent. The uncertainty, when specified, consists in the probable error in the last two digits of mantissa, enclosed in square brackets. When omitted, the constant is either assigned (see below) or else the error is implicitely [5] units in the first omitted position. The format of the exponent is either e+value or e-value. When the exponent specification is missing, e+0 is intended.
Examples:
    2.34567[17] e+2 indicates a quantity with the most probable value of 234.567 and an expected error of ±0.017.
    2.34567 e+2 indicates a quantity with the most probable value of 234.567 and an implicit error of ±0.0005.
Bold magenta values indicate constants whose values are assigned by convention
and therefore not subject to experimental assessment. In particular this applies to the speed of light which now indirectly defines the meter, and the permeability of vacuum which fixes the electromagnetic field gauche and indirectly defines the ampere. In turn, these determine the permittivity and characteristic impedance of vacuum, making them assigned as well. The values of assigned constants and some of their functions are listed also on OEIS, the Online Encyclopedia of Integer Sequences. See the generic comments for entry A003678 (speed of light c), as well as these entries:
A182999 (c^2), A019694 (μ0), A081799 (ε0), A213610 (Z0), A072915 (standard gravity), A213611 (standard atmosphere), A213612 (Julian year), A213613 (Gregorian year), A213614 (light-year).
Bold black values indicate physics constants which can not be directly derived from others.
This is potentialy subject to discussion, since the constants form an interconnected net which is carefully fitted to all available experimental data.
Vertical bar is used to separate various alias expressions for a dimension.
Classification does not exactly follow NIST standard but reflects the Author's opinions on what came first - whether the hen or the egg :-)
Conventional values:
a) The conventional (adopted) value of the Josephson constant is used to realize voltage reference devices [Benz 2004].
b) The conventional (adopted) value of the von Klitzing constant is used to realize electric resistance reference devices [Bachmair 2003].
The value of Hubble constant
was estimated by the group of W.Freedman in 1999 as 70±7.0 (km/s)/Megaparsec. Values as low as 50 and as high as 82 km/s/Mp were found in earlier measurements but the latest one is now believed to be in error of not more than 10% (the conversion factor for parsec, taken from the current NIST database, is 3.085678e+16 m). The value reported here corresponds to the latest adjustments adopted by NASA (see Wikipedia).
No attempt was made to report this constant's rate of change, consider too uncertain so far.

References: Constants of Physics, sorted by year and by the first author

  • Newcomb Simon,
    The Elements Of The Four Inner Planets And The Fundamental Constants Of Astronomy,
    Nabu Press 2011. ISBN 978-1178952315. more >>
  • Karshenboim Savely G., Peik Ekkehard,
    Astrophysics, Clocks and Fundamental Constants,
    Springer 2010. ISBN 978-3642060250. more >>
  • Nakamura K. et al (Particle Data Group),
    Review of Particle Physics,
    J.Phys.G: Nucl.Part.Phys. 37 075021 (2010).
  • Fritzsch Harald,
    The Fundamental Constants: A Mystery of Physics,
    World Scientific Publishing Company 2009. ISBN 978-9812834324. more >>
  • Mohr Peter J.,Taylor Barry N., Newell David B.
    CODATA recommended values of the fundamental physical constants: 2006,
    Rev.Mod.Phys. 80,633-730 (2008). DOI: 10.1103/RevModPhys.80.633.
    This is the basic source of CODATA 2010.
  • Haensch T., Leschiutta S., Wallard A.J.,
    Metrology and Fundamental Constants,
    IOS Press 2007. ISBN 978-1586037840. more >>
  • Hatch E.,
    A Few Simple Facts: From the Electron through the Fundamental Constants,
    Lulu.com 2007. ISBN 978-1430307907. more >>
  • Gabrielse G., Hanneke D., Kinoshita T., Nio M., Odom B.,
    New Determination of the Fine Structure Constant from the Electron g Value and QED,
    Phys.Rev.Letters 97, 030802 (2006).
  • Odom B., Hanneke D., D'Urso B., Gabrielse G.,
    New Measurement of the Electron Magnetic Moment Using a One-Electron Quantum Cyclotron,
    Phys.Rev.Letters 97, 030801 (2006).
  • Barrow John,
    The Constants of Nature:
    The Numbers That Encode the Deepest Secrets of the Universe
    ,
    Vintage 2004. ISBN 978-1400032259. more >>.
  • Benz S.P., Hamilton C.A.,
    Application of the Josephson Effect to Voltage Metrology,
    Proc.IEEE 92(10),1617-1629 (2004).
  • Frölich C., Lean J.,
    Solar Radiative Output and its Variability: Evidence and Mechanisms,
    Astron.Astrophys.Rev. 12,273-320 (2004). DOI.
  • Karshenboim S.G., Peik E., Editors,
    Astrophysics, Clocks and Fundamental Constants,
    Springer Verlag 2004. ISBN 978-3540219675. more >>
  • Pap J.M., Fox P.A., Frölich C., Editors,
    Solar Variability and its Effect on Climate,
    in Geophysical Monograph Series, No.141,
    American Geophysical Union 2004. ISBN 978-0875904061. more >>
  • Landwehr G.,
    25 Years of quantum Hall effect: how it all came about,
    Physica E 20(1-2), 1-13 (2003).
  • Bachmair H. et al,
    The von Klitzing resistance standard,
    Physica E 20(1-2), 14-23 (2003).
  • Conroy R.S.,
    Frequency standards, metrology and fundamental constants,
    Contemp.Phys. 4444(2), 99-135 (2003).
  • Finch S.,
    Mathematical Constants,
    Cambridge University Press 2003. ISBN 0-521-81805-2. more >>
  • Hall J.L.,Ye J.,
    Optical Frequency Standards and Measurement,
    IEEE Trans.Instrum.Meas. 52(2), 227-231 (2003).
  • Hatch E.,
    Common Factors of The Fundamental Constants of Particle Physics,
    BookSurge Publishing 2003. ISBN 978-1594571749. more >>
  • Kragh H.,
    Magic Number: A Partial History of the Fine-Structure Constant.
    Arch. Hist. Exact. Sci. 57(5),395-431 (2003).
  • Uzan J.P.,
    The fundamental constants and their variation: observational and theoretical status,
    Rev.Mod.Phys. 75(2), 403-455 (2003).
  • Marciano W.J.,
    Precision measurements and New Physics,
    J.Phys. G 29(1), 225-234 (2003).
  • Martins , Editor,
    The Cosmology of Extra Dimensions and Varying Fundamental Constants,
    Springer Verlag 2003. ISBN 978-1402011382. more >>
  • Faller J.E.,
    Thirty years of progress in absolute gravimetry:
    a scientific capability implemented by technological advances
    ,
    Metrologia 39(5), 425-428 (2002).
  • Hagiwara K. et al,
    Review of Particle Physics,
    Phys.Rev. D 66, 010001, 974 p. (2002).
  • Fritzsch H.,
    Fundamental Constants at High Energy,
    Fortschr.Phys. 5050(5-7), 518-524 (2002).
  • Becker P.,
    History and progress in the accurate determination of the Avogadro constant,
    Rep.Prog.Phys. 64(12), 1945-2008 (2001).
  • Quinn T.J.,
    Recent Advance in Metrology and Fundamental Constants,
    Ios Press 2001. ISBN 978-1586031671. more >>
  • Varshalovich D.A., Potekhin A.Y., Ivanchik A.V.,
    Puzzle Of the Constancy Of Fundamental Constants,
    Comments.At.Mol.Phys. 2(5), D223-232 (2001).
  • Varshalovich D.A., Potekhin A.Y., Ivanchik A.V.,
    Problems of Cosmological Variability of Fundamental Physical Constants,
    Phys. Scr. T95, 76-80 (2001).
  • Taylor B.N,
    The International System of Units (SI),
    NIST Special Publication 330, 2001 Edition (supersedes the 1991 Edition).
  • Mohr P.J.,Taylor B.N.,
    CODATA recommended values of the fundamental physical constants: 1998,
    Rev.Mod.Phys. 72,351-495 (2000).
  • Mohr P.J.,Taylor B.N.,
    CODATA Recommended Values of the Fundamental Constants,
    in Atomic and Molecular Data and Their Applications, Berrington K.A., Bell K.L., Editors, Vol.543,
    Melville, New York: American Institute of Physics, 3-16 (2000).
  • Basov N.G., Gubin A.,
    Quantum Frequency Standards,
    IEEE J.Quantum Electron. 6(6), 857-868 (2000).
  • Luo J., Hu Z.K.,
    Status of measurement of the Newtonian gravitational constant G,
    Class.Quantum Grav. 17(12), 2351-2363 (2000).
  • Groom D.E. et al.,
    Review of particle physics,
    Eur.Phys.J. C 15(1-4), 1-878 (2000).
  • CODATA Recommended Values of the Fundamental Physical Constants: 1998,
    J.Phys.Chem.Ref.Data, 28, No.6, 1999.
  • Quinn T.J.,
    Practical realization of the definition of the metre (1997),
    Metrologia 36(3), 211-244 (1999).
  • Johnstone W.D.,
    For Good Measure:
    The Most Complete Guide to Weights and Measures and Their Metric Equivalents
    ,
    NTC Pub.Group 1998. ISBN 0-844-20851-5. more >>
  • The International System of Units (SI),
    Bureau International des Poids et Measures (BIPM), 7th Edition, 1998.
  • Johnson P.,
    The Constants of Nature: A Realist Account,
    Ashgate Publishing 1997. ISBN 978-1840141023. more >>
  • Cohen E.R.,Taylor B.N.,
    The Fundamental Physical Constants,
    Phys.Today, Aug. 1996, bg9.
  • Cowie, Songaila,
    Astrophysical Limits on the Evolution of Dimensionless Physical Constants over Cosmological Time,
    Astrophysical Journal 453, 596 (1995).
  • Sanders J., Editor,
    Atomic Masses and Fundamental Constants,
    Springer Verlag 1995. ISBN 978-0306350849. more >>
  • Cohen-Tannoudji G.,
    Universal Constants in Physics,
    McGraw-Hill 1992. ISBN 978-0070116511. more >>
  • Sisterna P., Vucetich H.,
    Time variation of fundamental constants: Bounds from geophysical and astronomical data,
    Physical Review D, 41, 1034 (1990), 44, 3096 (1991).
  • De Sabbata V., Melnikov V.N., Editors,
    Gravitational Measurements, Fundamental Metrology, and Constants,
    NATA ASI Series C: Vol.230
    D.Reidel Pub.Co. 1988. ISBN 978-9027727091. more >>
  • Petley B.W.,
    Fundamental Physical Constants and the Frontier of Measurement,
    Adam Hilger 1985. ISBN 978-0852744277. more >>
  • Lucas A.A., Cutler P.H., North A.,
    Quantum Metrology and Fundamental Physical Constants,
    Springer Verlag 1983. ISBN 978-0306413728. more >>
  • Richard E., Crowe K.M., Cohen J.W.M.D.,
    The Fundamental Constants of Physics,
    Intersience Publishers 1957. more >>
  • DuMond J.W.M.,Cohen R.,
    Least Squares Adjustment of the Atomic Constants,
    Rev.Mod.Phys. 25, 691 (1952).
  • Furth R.,
    The Limits of Measurement,
    Scientific American. 183 (1), 48 (1950).
  • Birge R.T.,
    Probable Values of General Physics Constants,
    Rev.Mod.Phys. 1 (Supplement), 1-73 (1929). DOI Link.

Web links, other than those appearing in the Tables


 F Books Lists:     Popular Science  F Mathematics  F Physics  F Chemistry
    Patents+IP  F Electronics | DSP  F Computing     Spintronics  F Materials
    WWW issues  F Instruments     Quantum Computing  F NMR | ESR | MRI  F Spectroscopy
Hint: the F symbols above, where present, are links to free online texts (books, courses, theses, ...)

  Visitor # 
Extra Byte


Link Directories:
PHYSICS | CHEMISTRY
Magnetic Resonance
MATH | COMPUTING
ELECTRONICS
PATENTS+IP
SCIENCE
 
More resources:
SI Units
SI Dimensions
Math constants
Unit Converters
HTML Glyphs


Support this site!
Shop from here:

COMPUTER STORE:
Deals
Bestsellers
Accessories
Calculators


New BOOKs:
 

TOP | Physics BOOKS | SI Units | SI Dimensions MATHEMATICAL Constants (on a separate page) Physics LINKS | Stan's Library | Stan's HUB
Copyright ©2005 Stanislav Sýkora. Stan's Library ISSN 2421-1230, DOI: 10.3247/SL2Phys07.001 Designed by Stan Sýkora